Skip to main content

Deploying Machine Learning Classifiers for Argumentative Relations “in the Wild”

  • Chapter
  • First Online:
From Argument Schemes to Argumentative Relations in the Wild

Part of the book series: Argumentation Library ((ARGA,volume 35))

  • 313 Accesses

Abstract

Argument Mining (AM) aims at automatically identifying arguments and components of arguments in text, as well as at determining the relations between these arguments, on various annotated corpora using machine learning techniques (Lippi & Torroni, 2016).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www-sop.inria.fr/NoDE/NoDE-xml.html#12AngryMen.

  2. 2.

    https://www.doc.ic.ac.uk/~oc511/ACMToIT2017_dataset.xlsx.

  3. 3.

    The sentence labelling is given here for ease of reference, and was not given to the annotators, who instead were presented with a monolithic, but short, text.

References

  • Amgoud, L., Cayrol, C., Lagasquie-Schiex, M. C., & Livet, P. (2008). On bipolarity in argumentation frameworks. International Journal of Intelligent Systems, 23(10), 1062–1093.

    Article  Google Scholar 

  • Bosc, T., Cabrio, E., & Villata, S. (2016). Tweeties squabbling: Positive and negative results in applying argument mining on social media. In Computational models of argument COMMA (pp. 21–32).

    Google Scholar 

  • Boser, B. E., Guyon, I. M., & Vapnik, V. N., (1992). A training algorithm for optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational Learning Theory. COLT ‘92, (pp. 144–152).

    Google Scholar 

  • Bowman, S. R., Angeli, G., Potts, C., & Manning, C. D. (2015). A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics.

    Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Cabrio, E., & Villata, S. (2013). A natural language bipolar argumentation approach to support users in online debate interac-tions. Argument & Computation, 4(3), 209–230.

    Article  Google Scholar 

  • Carstens, L., & Toni, F. (2015). Towards relation based argumentation mining. In Proceedings of the 2nd Workshop on Argumentation Mining (pp. 29–34).

    Google Scholar 

  • Carstens, L., & Toni, F. (2017). Using argumentation to improve classification in natural language problems. ACM Transactions on Internet Technology, 17(3), 30, 1–30, 23.

    Google Scholar 

  • Cayrol, C., & Lagasquie-Schiex, M.-C. (2005). On the acceptability of arguments in bipolar argumentation frameworks. In Symbolic and quantitative approaches to reasoning with uncertainty: 8th European conference (pp. 378–389).

    Google Scholar 

  • Cerutti, F., Palmer, A., Rosenfeld, A., Snajder, J., & Toni, F. (2016). A pilot study in using argumentation frameworks for online debates. In Proceedings of the First International Workshop on Systems and Algorithms for Formal Argumentation (SAFA) (Vol. 1672, pp. 63–74). CEUR-WS.org.

    Google Scholar 

  • Fleiss, J. L., et al. (1971). Measuring nominal scale agreement among many raters. Psychological Bulletin, 76(5), 378–382.

    Article  Google Scholar 

  • Ghosh, D., Muresan, S., Wacholder, N., Aakhus, M., & Mitsui, M. (2014). Analyzing argumentative discourse units in online interactions. In Proceedings of the First Workshop on Argument Mining (pp. 39–48).

    Google Scholar 

  • Habernal, I., & Gurevych, I. (2016). What makes a convincing argument? empirical analysis and detecting attributes of convincingness in web argumentation. In Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing (pp. 1214–1223), EMNLP.

    Google Scholar 

  • Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

    Article  Google Scholar 

  • Koreeda, Y., Yanase, T., Yanai, K., Sato, M., & Niwa, Y. (2016). Neural attention model for classification of sentences that support promoting/suppressing relationship. In Proceedings of the Third Workshop on Argument Mining.

    Google Scholar 

  • Krippendorff, K. (2004). Content analysis: An introduction to its methodology (second edition). Sage Publications.

    Google Scholar 

  • Lippi, Marco, & Torroni, Paolo. (2016). Argumentation mining: State of the art and emerging trends. ACM Transactions on Internet Technology, 16(2), 10.

    Article  Google Scholar 

  • Peldszus, A., & Stede, M. (2013). Ranking the annotators: An agreement study on argumentation structure. In: Proceedings of the 7th Linguistic Annotation Workshop and Interoperability with Discourse (pp. 196–204).

    Google Scholar 

  • Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. In Empirical methods in natural language processing (EMNLP) (pp. 1532–1543).

    Google Scholar 

  • Salah, Z., Coenen, F., & Grossi, D. (2013). Extracting debate graphs from parliamentary transcripts: A study directed at uk house of commons debates. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Law (pp. 121–130).

    Google Scholar 

  • Stab, C., & Gurevych, I. (2016). Parsing argumentation structures in persuasive essays. CoRR abs/1604.07370.

    Google Scholar 

  • Wachsmuth, H., Stein, B., & Ajjour, Y. (2017). “PageRank” for argument relevance. In Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics (EACL 17) (pp. 1116–1126).

    Google Scholar 

  • Walker, M. A., Tree, J. E. F., Anand, P., Abbott, R., & King, J. (2012). A corpus for research on deliberation and debate. In Proceedings of the Eighth International Conference on Language Resources and Evaluation, LREC (pp. 812–817).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oana Cocarascu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cocarascu, O., Toni, F. (2020). Deploying Machine Learning Classifiers for Argumentative Relations “in the Wild”. In: van Eemeren, F., Garssen, B. (eds) From Argument Schemes to Argumentative Relations in the Wild. Argumentation Library, vol 35. Springer, Cham. https://doi.org/10.1007/978-3-030-28367-4_17

Download citation

Publish with us

Policies and ethics