Skip to main content

An Imaging Approach to Bone Tumors

  • Chapter
  • First Online:
Tumors and Tumor-Like Lesions of Bone

Abstract

When evaluating a bone tumor, a systematic approach should be used paying particular attention to the age of the patient and location of the lesion along with the imaging appearance and clinical and laboratory findings to arrive at a plausible and limited differential diagnosis. An awareness of the spectrum of non-neoplastic reactive, metabolic, inflammatory, and infectious as well as iatrogenic and developmental lesions must also be taken into account as these can mimic a primary bone tumor. Radiographs are the mainstay and most cost-effective imaging modality for the evaluation of bone tumors. CT and MRI are particularly useful in areas of complex anatomy and for staging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American Cancer Society website. Cancers that develop in children. http://www.cancer.org/cancer/cancer-in-children/types-of-childhood-cancers.html. Updated August 22, 2016. Accessed 5 Nov 2017.

  2. American Cancer Society website. Key statistics about bone cancer. http://www.cancer.org/cancer/bonecancer/detailedguide/bone-cancer-key-statistics. Updated February 5, 2018. Accessed 17 Mar 2018.

  3. Dahlin DC, Unni KK, editors. Bone tumors: general aspects and data on 8,542 cases. Springfield: C.C. Thomas; 1986.

    Google Scholar 

  4. Mirra JM, editor. Bone tumors: clinical, radiologic, and pathologic correlations. Philadelphia: Lea & Febiger; 1989.

    Google Scholar 

  5. Simpfendorer CS, Ilaslan H, Davies AM, James SL, Obuchowski NA, Sundaram M. Does the presence of focal marrow fat signal within a tumor on MRI exclude malignancy? An analysis of 184 histologically proven tumors of the pelvis and appendicular skeleton. Skelet Radiol. 2008;37:797–804.

    Google Scholar 

  6. Byun BH, Kong CB, Lim I, Kim BI, Choi CW, Song WS, et al. Comparison of (18)F-FDG PET/CT and (99m)Tc-MDP bone scintigraphy for detection of bone metastasis on osteosarcoma. Skelet Radiol. 2013;42:1673–81.

    Google Scholar 

  7. Gerth HU, Juergens KU, Dirksen U, Gerss J, Schober O, Franzius C. Significant benefit of multimodal imaging: PET/CT compared with PET alone in staging and follow-up of patients with Ewing tumors. J Nucl Med. 2007;48:1932–9.

    PubMed  Google Scholar 

  8. Peller PJ. PET/CT role of positron emission tomography/computed tomography in bone malignancies. Radiol Clin N Am. 2013;51:845–64.

    PubMed  Google Scholar 

  9. Costelloe CM, Murphy WA Jr, Chasen BA. Musculoskeletal pitfalls in 18F-FDG PET/CT: pictorial review. AJR Am J Roentgenol. 2009;193:WS1–13.

    PubMed  Google Scholar 

  10. Sawicki LM, Grueneisen J, Buchbender C, Schaarschmidt BM, Gomez B, Ruhlmann V, et al. Comparative performance of 18F-FDG PET/MRI and 18F-FDG PET/CT in detection and characterization of pulmonary lesions in 121 oncologic patients. J Nucl Med. 2016;57:582–6.

    CAS  PubMed  Google Scholar 

  11. Welker JA, Henshaw RM, Jelinek J, Shmookler BM, Malawer MM. The percutaneous needle biopsy is safe and recommended in the diagnosis of musculoskeletal masses. Cancer. 2000;89:2677–86.

    CAS  PubMed  Google Scholar 

  12. Rosenthal DI, Alexander A, Rosenberg AE, Springfield D. Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology. 1992;183:29–33.

    CAS  PubMed  Google Scholar 

  13. Callstrom MR, Charboneau JW. Image-guided palliation of painful metastases using percutaneous ablation. Tech Vasc Interv Radiol. 2007;10:120–31.

    PubMed  Google Scholar 

  14. Pusceddu C, Sotgia B, Fele RM, Melis L. Treatment of bone metastases with microwave thermal ablation. J Vasc Interv Radiol. 2013;24:229–33.

    PubMed  Google Scholar 

  15. Shiels WE 2nd, Mayerson JL. Percutaneous doxycycline treatment of aneurysmal bone cysts with low recurrence rate: a preliminary report. Clin Orthop Relat Res. 2013;471(8):2675–83.

    PubMed  PubMed Central  Google Scholar 

  16. Yasko AW, Fanning CV, Ayala AG, Carrasco CH, Murray JA. Percutaneous techniques for the diagnosis and treatment of localized langerhans’ cell histiocytosis eosinophilic granuloma of bone. J Bone Joint Surg. 1998;80:219–28.

    CAS  PubMed  Google Scholar 

  17. Betsy M, Kupersmith LM, Springfield DS. Metaphyseal fibrous defects. J Am Acad Orthop Surg. 2004;12:89–95.

    PubMed  Google Scholar 

  18. Kransdorf M, Moser R Jr, Gilkey FW. Fibrous dysplasia. Radiographics. 1990;10:519–37.

    CAS  PubMed  Google Scholar 

  19. Siegal GP, Bianco P, Dal Cin P. Fibrous dysplasia. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 352–3.

    Google Scholar 

  20. Dorfman HD, Czerniak B. Bone tumors. St. Louis: Mosby; 1998.

    Google Scholar 

  21. Dorfman HD, Czerniak B. Bone cancers. Cancer. 1995;75:203–10.

    CAS  PubMed  Google Scholar 

  22. Schwartz DT, Alpert M. The malignant transformation of fibrous dysplasia. Am J Med Sci. 1964;247:1–20.

    CAS  PubMed  Google Scholar 

  23. Jaffe HL, Lichtenstein L. Solitary benign enchondroma of bone. Arch Surg. 1943;46:480–93.

    Google Scholar 

  24. Brien EW, Mirra JM, Kerr R. Benign and malignant cartilage tumors of bone and joint: their anatomic and theoretical basis with an emphasis on radiology, pathology and clinical biology. I. The intramedullary cartilage tumors. Skeletal Radiol. 1997;26:325–53.

    CAS  PubMed  Google Scholar 

  25. Potter BK, Freedman BA, Lehman RA Jr, Shawen SB, Kuklo TR, Murphey MD. Solitary epiphyseal enchondromas. J Bone Joint Surg Am. 2005;87:1551–60.

    PubMed  Google Scholar 

  26. Resnick D. Paget disease of bone: current status and a look back to 1943 and earlier. AJR Am J Roentgenol. 1988;150:249–56.

    CAS  PubMed  Google Scholar 

  27. Watt I. Paget disease. In: Pope TL, Bloem HL, Beltran J, Morrison WB, Wilson DJ, editors. Imaging of the musculoskeletal system. Philadelphia: Elsevier; 2008. p. 1604.

    Google Scholar 

  28. Sundaram M, Khanna G, El-Khoury GY. T1-weighted MR imaging for distinguishing large osteolysis of Paget’s disease from sarcomatous degeneration. Skelet Radiol. 2001;30:378–83.

    CAS  Google Scholar 

  29. Khurjekar KS, Vidyadhara S, Dheenadhayalan J, Rajasekaran S. Spontaneous rapid osteolysis in Paget’s disease after internal fixation of subtrochanteric femoral fracture. Singap Med J. 2006;47:897–900.

    CAS  Google Scholar 

  30. Greenspan A. Benign bone-forming lesions: osteoma, osteoid osteoma, and osteoblastoma. Clinical, imaging, pathologic, and differential considerations. Skelet Radiol. 1993;22:485–500.

    CAS  Google Scholar 

  31. Jackson RP, Reckling FW, Mants FA. Osteoid osteoma and osteoblastoma. Similar histologic lesions with different natural histories. Clin Orthop Relat Res. 1977;128:303–13.

    Google Scholar 

  32. Saifuddin A, White J, Sherazi Z, Shaikh MI, Natali C, Ransford AO. Osteoid osteoma and osteoblastoma of the spine. Factors associated with the presence of scoliosis. Spine (Phila Pa 1976). 1998;23:47–53.

    CAS  Google Scholar 

  33. Edeiken J, DePalma AF, Hodes PJ. Osteoid osteoma (Roentgenographic emphasis). Clin Orthop Relat Res. 1966;49:201–6.

    CAS  PubMed  Google Scholar 

  34. Campanna R, Van Horn JR, Ayala A, Picci P, Bettelli G. Osteoid osteoma and osteoblastoma of the talus. A report of 40 cases. Skelet Radiol. 1986;15:360–4.

    Google Scholar 

  35. Kransdorf MJ, Stull MA, Gilkey FW, Moser RP Jr. Osteoid osteoma. Radiographics. 1991;11:671–96.

    CAS  PubMed  Google Scholar 

  36. Schlesinger AE, Hernandez RJ. Intracapsular osteoid osteoma of the proximal femur: findings on plain film and CT. AJR Am J Roentgenol. 1990;154:1241–4.

    CAS  PubMed  Google Scholar 

  37. Kattapuram SV, Kushner DC, Phillips WC, Rosenthal DI. Osteoid osteoma: an unusual cause of articular pain. Radiology. 1982;147:383–7.

    Google Scholar 

  38. Smith FW, Gilday DL. Scintigraphy appearances of osteoid osteoma. Radiology. 1980;137:191–5.

    CAS  PubMed  Google Scholar 

  39. Murphey MD, Andrews CL, Flemming DJ, Temple HT, Smith WS, Smirniotopoulos JG. From the archives of the AFIP. Primary tumors of the spine: radiologic pathologic correlation. Radiographics. 1996;16:1131–58.

    CAS  PubMed  Google Scholar 

  40. Kroon HM, Schurmans J. Osteoblastoma: clinical and radiologic findings in 98 new cases. Radiology. 1990;175:783–90.

    CAS  PubMed  Google Scholar 

  41. Kransdorf MJ, Murphey MD. Osseous tumors. In: Davies AM, Sundaram M, James SLJ, editors. Imaging of bone tumors and tumor-like lesions: techniques and applications. Berlin: Springer; 2009. p. 277.

    Google Scholar 

  42. Resnick D, Kyriakos M, Greenway GD. Tumors and tumor-like lesions of bone: Imaging and pathology of specific lesions. In: Resnick D, Kransdorf MJ, editors. Bone and joint imaging. 3rd ed. Philadelphia: Elsevier; 2005. p. 1131.

    Google Scholar 

  43. Rosenberg AE, Clenton-Jansen AM, de Pinieux G, Deyrup AT, Hauben E, Squire J. Conventional osteosarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 282–8.

    Google Scholar 

  44. Olivera AM, Okada K, Squire J. Telangiectatic osteosarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 289–90.

    Google Scholar 

  45. Inwards C, Squire J. Low grade central osteosarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 281–2.

    Google Scholar 

  46. Andresen KJ, Sundaram M, Unni KK, Sim FH. Imaging features of low-grade central osteosarcoma of the long bones and pelvis. Skelet Radiol. 2004;33:373–9.

    Google Scholar 

  47. Unni KK, Dahlin DC, McLeod RA, Pritchard DJ. Intraosseous well-differentiated osteosarcoma. Cancer. 1977;40:1337–47.

    CAS  PubMed  Google Scholar 

  48. Kurt AM, Unni KK, McLeod RA, Pritchard DJ. Low-grade intraosseous osteosarcoma. Cancer. 1990;65:1418–28.

    CAS  PubMed  Google Scholar 

  49. Resnick D, Kransdorf MJ. Metabolic diseases. In: Resnick D, Kransdorf MJ, editors. Bone and joint imaging, vol. 278. 3rd ed. Philadelphia: Elsevier; 2005. p. 576.

    Google Scholar 

  50. Lazar A, Mertens F. Parosteal osteosarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 292–3.

    Google Scholar 

  51. Montag AG, Squire J. Periosteal osteosarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 294–6.

    Google Scholar 

  52. Wold LE, McCarthy EF, Squire J. High grade surface osteosarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 295–6.

    Google Scholar 

  53. Forest M, De Pinieux G, Knuutila S. Secondary osteosarcomas. In: Fletcher CDM, Unni KK, Mertens F, editors. WHO classification of tumors. Pathology and genetics: tumors of soft tissue and bone. Lyon: IARC Press; 2002. p. 277–8.

    Google Scholar 

  54. Douis H, Saifuddin A. The imaging of cartilaginous bone tumors. I. Benign lesions. Skelet Radiol. 2012;41:1195–212.

    CAS  Google Scholar 

  55. Murphey MD, Choi JJ, Kransdorf MJ, Flemming DJ, Gannon FH. Imaging of osteochondroma: variants and complications with radiologic-pathologic correlation. Radiographics. 2000;20:1407–34.

    CAS  PubMed  Google Scholar 

  56. Bovee JVGM, Heymann D, Wuts W. Osteochondroma. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 250–1.

    Google Scholar 

  57. Bernard SA, Murphey MD, Flemming DJ, Kransdorf MJ. Improved differentiation of benign osteochondromas from secondary chondrosarcomas with standardized measurement of cartilage cap at CT and MR imaging. Radiology. 2010;255:857–65.

    PubMed  Google Scholar 

  58. Lucas DR, Bridge JA. Chondromas: enchondroma, periosteal chondroma. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 254.

    Google Scholar 

  59. Hogendoorn PCW, Bovee JVMG, Nielsen GP. Chondrosarcoma (grades I-III) including primary and secondary variants and periosteal chondrosarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 264–8.

    Google Scholar 

  60. Skeletal Lesions Interobserver Correlation among Expert Disgnosticians (SLICED) Study Group. Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. J Bone Joint Surg Am. 2007;89:2113–23.

    Google Scholar 

  61. Murphey MD, Flemming DJ, Boyea SR, Bojescul JA, Sweet DE, Temple HT. Enchondroma versus chondrosarcoma in the appendicular skeleton: differentiating features. Radiographics. 1998;18:1213–37.

    CAS  PubMed  Google Scholar 

  62. Bui KL, Ilaslan H, Bauer TW, Lietman SA, Joyce MJ, Sundaram M. Cortical scalloping and cortical penetration by small eccentric chondroid lesions in the long tubular bones: not a sign of malignancy? Skelet Radiol. 2009;38:791–6.

    Google Scholar 

  63. Mercuri M, Picci P, Campanacci L, Rulli E. Dedifferentiated chondrosarcoma. Skelet Radiol. 1995;24:409–16.

    CAS  Google Scholar 

  64. Flanagan AM, Yamaguchi T. Chordoma. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 328–30.

    Google Scholar 

  65. De Alva E, Lessnick SL, Sorensen PH. Ewing sarcoma. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 306–9.

    Google Scholar 

  66. Mirra JM. Ewing’s sarcoma. In: Mirra JM, editor. Bone tumors: clinical, radiologic, and pathologic correlations. Philadelphia: Lea & Febiger; 1989. p. 1087–117.

    Google Scholar 

  67. Kransdorf MJ, Smith SE. Lesions of unknown histogenesis: Langerhans cell histiocytosis and Ewing sarcoma. Semin Musculoskelet Radiol. 2000;4:113–25.

    CAS  PubMed  Google Scholar 

  68. Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013.

    Google Scholar 

  69. Koplas MC, Lefkowitz RA, Bauer TW, Joyce MJ, Ilaslan H, Landa J, et al. Imaging findings, prevalence and outcome of de novo and secondary malignant fibrous histiocytoma of bone. Skelet Radiol. 2010;39:791–8.

    Google Scholar 

  70. Kransdorf MJ, Murphey MD. Giant cell tumor. In: Davies AM, Sundaram M, James SLJ, editors. Imaging of bone tumors and tumor-like lesions: techniques and applications. Berlin: Springer; 2009. p. 330.

    Google Scholar 

  71. Athanasou NA, Bansal M, Forsyth R, Reid RP, Sapi Z. Giant cell tumor of bone. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 321–4.

    Google Scholar 

  72. Murphey MD, Nomikos GC, Flemming DJ, Gannon FH, Temple HT, Kransdorf MJ. From the archives of AFIP. Imaging of giant cell tumor and giant cell reparative granuloma of bone: radiologic-pathologic correlation. Radiographics. 2001;21:1283–309.

    CAS  PubMed  Google Scholar 

  73. Ilaslan H, Sundaram M, Unni KK. Solid variant of aneurysmal bone cysts in long tubular bones: Giant cell reparative granuloma. AJR Am J Roentgenol. 2003;180:1681–7.

    PubMed  Google Scholar 

  74. Forsyth R, Jundt G. Giant cell lesion of the small bones. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 320.

    Google Scholar 

  75. Nielsen GP, Fletcher JA, Oliveira MA. Aneurysmal bone cyst. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 348–9.

    Google Scholar 

  76. Mirra JM. Histiocytoses. In: Mirra JM, editor. Bone tumors: clinical, radiologic, and pathologic correlations. Philadelphia: Lea & Febiger; 1989. p. 1021–86.

    Google Scholar 

  77. Dahlin DC, Unni KK. “Adamantinoma” of long bones. In: Dahlin DC, Unni KK, editors. Bone tumors: general aspects and data on 8,542 cases. Springfield: C.C. Thomas; 1986. p. 346–56.

    Google Scholar 

  78. Czerniak B, Rojas-Corona RR, Dorfman HD. Morphologic diversity of long bone adamantinoma. The concept of differentiated (regressing) adamantinoma and its relationship to osteofibrous dysplasia. Cancer. 1989;64:2319–34.

    CAS  PubMed  Google Scholar 

  79. Keeney GL, Unni KK, Beabout JW, Pritchard DJ. Adamantinoma of long bones. A clinicopathologic study of 85 cases. Cancer. 1989;64:730–7.

    CAS  PubMed  Google Scholar 

  80. Szendroi M, Antal I, Arato G. Adamantinoma of long bones: a long-term follow-up study of 11 cases. Pathol Oncol Res. 2009;15:209–16.

    PubMed  Google Scholar 

  81. Moon NF, Mori H. Adamantinoma of the appendicular skeleton--updated. Clin Orthop Relat Res. 1986;(204):215–37.

    Google Scholar 

  82. Flowers R, Baliga M, Guo M, Liu SS. Tibial adamantinoma with local recurrence and pulmonary metastasis: report of a case with histocytologic findings. Acta Cytol. 2006;50:567–73.

    PubMed  Google Scholar 

  83. Jain D, Jain VK, Vasishta RK, Ranjan P, Kumar Y. Adamantinoma: a clinicopathological review and update. Diagn Pathol. 2008;3:8.

    PubMed  PubMed Central  Google Scholar 

  84. Mirra JM. Osteofibrous dysplasia. In: Mirra JM, editor. Bone tumors: clinical, radiologic, and pathologic correlations. Philadelphia: Lea & Febiger; 1989. p. 1219–31.

    Google Scholar 

  85. Kahn LB. Adamantinoma, osteofibrous dysplasia and differentiated adamantinoma. Skelet Radiol. 2003;32:245–58.

    Google Scholar 

  86. Sciot R, Mandahl N. Subungual exostosis and bizarre parosteal osteochondromatous proliferation. In: Fletcher CDM, Bridge JA, Hogendoorn P, Mertens F, editors. WHO classification of tumors of soft tissue and bone. 4th ed. Lyon: IARC Press; 2013. p. 259–60.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darlene M. Holden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Holden, D.M., Ilaslan, H., Sundaram, M. (2020). An Imaging Approach to Bone Tumors. In: Santini-Araujo, E., Kalil, R.K., Bertoni, F., Park, YK. (eds) Tumors and Tumor-Like Lesions of Bone. Springer, Cham. https://doi.org/10.1007/978-3-030-28315-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28315-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28314-8

  • Online ISBN: 978-3-030-28315-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics