Skip to main content

Fourier Analysis on Groups, Random Walks and Markov Chains

  • Chapter
  • First Online:
Book cover Group Matrices, Group Determinants and Representation Theory

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2233))

  • 1235 Accesses

Abstract

In Chap. 1 it is explained that if p is a probability on a finite group G the group matrix X G(p) is a transition matrix for a random walk on G. If f is an arbitrary function on G the process of transforming X G(f) into a block diagonal matrix is equivalent to the obtaining the Fourier transform of f. This chapter explains the connections with harmonic analysis and the group matrix. Most of the discussion is on probability theory and random walks.

The fusion of characters discussed in Chap. 4 becomes relevant, and also the idea of fission of characters is introduced, especially those fissions which preserve diaonalizability of the corresponding group matrix. As an example of how the group matrix and group determinant can be used as tools, their application to random walks which become uniform after a finite number of steps is examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Agaian, J. Astola, K. Egiazarian, Binary Polynomial Transforms and Nonlinear Digital Filters (Marcel Dekker, New York, 1995)

    MATH  Google Scholar 

  2. D. Aldous, Random walks on finite groups and rapidly mixing Markov chains, in Séminaire de Probabilités, XVII. Lecture Notes in Mathematics, vol. 986 (Springer, Berlin 1983), pp. 243–297

    Google Scholar 

  3. L. Auslander, P. Tolmieri, Is computing with finite Fourier transforms pure or applied mathematics? Bull. Am. Math. Soc. (N.S.) 1, 847–897 (1979)

    Google Scholar 

  4. D. Bayer, P. Diaconis, Trailing the dovetail shuffle to its lair. Ann. Appl. Probab. 2, 294–313 (1986)

    Article  MathSciNet  Google Scholar 

  5. E. Borel, A. Chéron, Théorie Mathématique du Bridge á la Portée de Tous (Gauthier-Villars, Paris 1940)

    MATH  Google Scholar 

  6. R. Brauer, Über die Kleinsche Theorie der algebraischen Gleichungen. Math. Ann. 110, 473–500 (1935)

    Article  MathSciNet  Google Scholar 

  7. E.O. Brigham, The Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, 1974)

    MATH  Google Scholar 

  8. C.S. Burrus, T.W. Parks, DFT/FFT and Convolution Algorithms: Theory and Implementation (Wiley, New York, 1985)

    MATH  Google Scholar 

  9. T. Ceccherini-Silberstein, F. Scarabotti, F. Tolli, Harmonic Analysis on Finite Groups. Cambridge Studies in Advanced Mathematics, vol. 108 (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  10. J.W. Cooley, The re-discovery of the fast Fourier transform algorithm. Mikrochim. Acta III, 33–45 (1987)

    Article  Google Scholar 

  11. P.J. Davis, Circulant Matrices (Chelsea, New York, 1994)

    MATH  Google Scholar 

  12. P. Diaconis, Group Representations in Probability and Statistics (Institute of Mathematical Statistics, Hayward, 1988)

    Google Scholar 

  13. P. Diaconis, The cutoff phenomenon in finite Markov chains. Proc. Nat. Acad. Sci. 43, 1659–1664 (1995)

    MathSciNet  MATH  Google Scholar 

  14. P. Diaconis, Random walks on groups: characters and geometry, in Groups St. Andrews 2001 in Oxford, vol. I. London Mathematical Society Lecture Note Series, vol. 304 (Cambridge University Press, Cambridge, 2003), pp. 120–142

    Google Scholar 

  15. P. Diaconis, D. Rockmore, Efficient computation of the Fourier transform on finite groups. J. Am. Math. Soc. 3, 297–332 (1990)

    Article  MathSciNet  Google Scholar 

  16. P. Diaconis, M. Shahshahani, Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Geb. 57, 159–179 (1981)

    Article  MathSciNet  Google Scholar 

  17. M.T. Heidemann, D.H. Johnson, C.S. Burrus, Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci. 34, 265–277 (1985)

    Article  MathSciNet  Google Scholar 

  18. S.P. Humphries, K.W. Johnson, A. Misseldine, Commutative S-rings of maximal dimension. Commun. Algebra 43, 5298–5327 (2015)

    Article  MathSciNet  Google Scholar 

  19. J. Karlof, The subclass algebra associated to a finite group and a subgroup. Trans. Am. Math. Soc. 207, 329–341 (1975)

    Article  MathSciNet  Google Scholar 

  20. D. Kosambi, U.V.R. Rao, The efficiency of randomization by card shuffling. J. R. Stat. Soc. A 128, 223–233 (1958)

    Article  Google Scholar 

  21. D.A. Levin, Y. Peres, E.L. Wilmer, Markov Chains and Mixing Times (American Mathematical Society, Providence, 2009)

    MATH  Google Scholar 

  22. G.W. Mackey, Harmonic analysis as the exploitation of symmetry—a historical survey. Bull. Am. Math. Soc. (N.S.) 3, 543–698 (1980)

    Article  MathSciNet  Google Scholar 

  23. G.W. Mackey, The Scope and History of Commutative and Noncommutative Harmonic Analysis. History of Mathematics, vol. 5 (American Mathematical Society, Providence; London Mathematical Society, London, 1992)

    Google Scholar 

  24. D.K. Maslen, D.N. Rockmore, Separation of variables and the computation of Fourier transforms on finite groups. J. Am. Math. Soc. 10, 169–214 (1997)

    Article  MathSciNet  Google Scholar 

  25. D.K. Maslen, D.N. Rockmore, The Cooley-Tukey FFT and group theory. Notices Am. Math. Soc. 48, 1151–1160 (2001)

    MathSciNet  MATH  Google Scholar 

  26. H.J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms (Springer, Berlin, 1981)

    Book  Google Scholar 

  27. A. Okounkov, A.M. Vershik, A new approach to the representation theory of the symmetric groups. Sel. Math. (N.S.) 2, 581–605 (1996)

    Google Scholar 

  28. H. Poincaré, Sur l’intégration des équations linéaires et les périodes des intégrales abéliennes. J. des Math. Pures Appl. 9(5), 139–212 (1903), Oeuvres 3, 106–166

    Google Scholar 

  29. H. Poincaré, Calcul des Probabilités (Gautier-Villars, Paris, 1912)

    MATH  Google Scholar 

  30. F. Roesler, Darstellungstheorie von Schur-Algebren. Math. Zeitshrift 125, 32–58 (1972)

    MathSciNet  Google Scholar 

  31. L. Saloff-Coste, Random Walks on Finite Groups, in Probability on Discrete Structures Encyclopaedia of Mathematical Sciences, vol. 110 (Springer, Berlin, 2004), pp. 263–346

    MATH  Google Scholar 

  32. J.D.H. Smith, Induced class functions are conditional expectations. Eur. J. Comb. 10, 293–296 (1989)

    Article  MathSciNet  Google Scholar 

  33. R.S. Stanković, C. Moraga, J. Astola, Fourier Analysis on Finite Groups with Applications in Signal Processing and System Design (Wiley-IEEE Press, Hoboken, 2005)

    Book  Google Scholar 

  34. L. Takács, Harmonic analysis on Schur algebras and its applications in the theory of probability, in Probability Theory and Harmonic Analysis, ed. by J.-A. Chao, W.A. Woyczyński (Marcel Dekker, New York, 1986)

    MATH  Google Scholar 

  35. A. Terras, Fourier Analysis on Finite Groups and Applications. London Mathematical Society Student Texts, vol. 43 (Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  36. R. Tolmieri, M. An, C. Lu, Algorithms for Discrete Fourier Transforms and Convolutions (Springer, New York, 1989)

    Book  Google Scholar 

  37. A.L. Vyshnevetskiy, E.M. Zhmud’, Random walks on finite groups converging after finite number of steps. Algebra Discret. Math. 2, 123–129 (2008)

    Google Scholar 

  38. E. Wigner, Restriction of irreducible representations of groups to a subgroup. Proc. R. Soc. Lond. Ser. A 322, 181–189 (1971)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnson, K.W. (2019). Fourier Analysis on Groups, Random Walks and Markov Chains. In: Group Matrices, Group Determinants and Representation Theory. Lecture Notes in Mathematics, vol 2233. Springer, Cham. https://doi.org/10.1007/978-3-030-28300-1_7

Download citation

Publish with us

Policies and ethics