Skip to main content

Basic Concepts of the Microcirculation

  • Chapter
  • First Online:
Microcirculation
  • 577 Accesses

Abstract

The coronary circulation can be roughly divided into two compartments, the conducting arteries and the microcirculation. While epicardial vessels provide conduction pathways which exhibit very low resistance even during high flow, the microcirculation exhibits resistance within small arteries and arterioles and provides a large area for the exchange of oxygen, carbon dioxide, and nutrients within the capillaries. The regulation of flow is achieved at the site of the microcirculation by active dilatory mechanisms. A prerequisite for substantial dilation is the presence of constriction (vascular tone) which is generated by the vessel’s response to transmural pressure differences and concomitant generation of wall tension (myogenic tone). The active dilatory mechanisms consist of metabolic pathways generated by the action of the cardiomyocytes as well as dilator signals originating in endothelial cells. They produce in response to different stimuli endothelium-dependent dilation which is crucial for the enhancement of coronary flow during enhanced oxygen demands. These mechanisms include generation of nitric oxide as well as initiating smooth muscle hyperpolarisation through pathways that are not fully resolved yet but include release of potassium ions, hydrogen peroxide, and epoxyeicosatrienoic acids (EDHF). In addition, direct current transfer from endothelial cells to smooth muscle through myoendothelial gap junctions contributes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyer AM, Gutterman DD. Regulation of the human coronary microcirculation. J Mol Cell Cardiol. 2012;52:814–21.

    Article  CAS  PubMed  Google Scholar 

  2. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Am J Phys. 1986;251:H779–88.

    CAS  Google Scholar 

  3. Zamir M. Shear forces and blood vessel radii in the cardiovascular system. J Gen Physiol. 1977;69:449–61.

    Article  CAS  PubMed  Google Scholar 

  4. Ellinsworth DC, Sandow SL, Shukla N, Liu Y, Jeremy JY, et al. Endothelium-derived hyperpolarization and coronary vasodilation: diverse and integrated roles of epoxyeicosatrienoic acids, hydrogen peroxide, and gap junctions. Microcirculation. 2016;23:15–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gutterman DD, Chabowski DS, Kadlec AO, Durand MJ, Freed JK, et al. The human microcirculation: regulation of flow and beyond. Circ Res. 2016;118:157–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Pries AR, Reglin B. Coronary microcirculatory pathophysiology: can we afford it to remain a black box? Eur Heart J. 2017;38:478–88.

    CAS  PubMed  Google Scholar 

  7. Pries AR, Badimon L, Bugiardini R, Camici PG, Dorobantu M, et al. Coronary vascular regulation, remodelling, and collateralization: mechanisms and clinical implications on behalf of the working group on coronary pathophysiology and microcirculation. Eur Heart J. 2015;36:3134–46.

    Article  CAS  PubMed  Google Scholar 

  8. Rakusan K, Flanagan MF, Geva T, Southern J, Van Praagh R. Morphometry of human coronary capillaries during normal growth and the effect of age in left ventricular pressure-overload hypertrophy. Circulation. 1992;86:38–46.

    Article  CAS  PubMed  Google Scholar 

  9. Zamir M. Distributing and delivering vessels of the human heart. J Gen Physiol. 1988;91:725–35.

    Article  CAS  PubMed  Google Scholar 

  10. Zamir M, Chee H. Branching characteristics of human coronary arteries. Can J Physiol Pharmacol. 1986;64:661–8.

    Article  CAS  PubMed  Google Scholar 

  11. Brown RE. The pattern of the microcirculatory bed in the ventricular myocardium of domestic mammals. Am J Anat. 1965;116:355–74.

    Article  CAS  PubMed  Google Scholar 

  12. Kaneko N, Matsuda R, Toda M, Shimamoto K. Three-dimensional reconstruction of the human capillary network and the intramyocardial micronecrosis. Am J Physiol Heart Circ Physiol. 2011;300:H754–61.

    Article  CAS  PubMed  Google Scholar 

  13. Heusch G, Baumgart D, Camici P, Chilian W, Gregorini L, et al. Alpha-adrenergic coronary vasoconstriction and myocardial ischemia in humans. Circulation. 2000;101:689–94.

    Article  CAS  PubMed  Google Scholar 

  14. Borgstrom P, Gestrelius S. Integrated myogenic and metabolic control of vascular tone in skeletal muscle during autoregulation of blood flow. Microvasc Res. 1987;33:353–76.

    Article  CAS  PubMed  Google Scholar 

  15. Carlson BE, Arciero JC, Secomb TW. Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses. Am J Physiol Heart Circ Physiol. 2008;295:H1572–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cornelissen AJM, Dankelman J, VanBavel E, Spaan JAE. Balance between myogenic, flow-dependent, and metabolic flow control in coronary arterial tree: a model study. Am J Physiol Heart Circ Physiol. 2002;282:H2224–37.

    Article  CAS  PubMed  Google Scholar 

  17. Davis MJ. Perspective: physiological role(s) of the vascular myogenic response. Microcirculation. 2012;19:99–114.

    Article  CAS  PubMed  Google Scholar 

  18. Johnson PC. Autoregulation of blood flow. Circ Res. 1986;59:483–95.

    Article  CAS  PubMed  Google Scholar 

  19. Baylie RL, Brayden JE. TRPV channels and vascular function. Acta Physiol (Oxf). 2011;203:99–116.

    Article  CAS  Google Scholar 

  20. Earley S, Brayden JE. Transient receptor potential channels in the vasculature. Physiol Rev. 2015;95:645–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sharif-Naeini R, Dedman A, Folgering JHA, Duprat F, Patel A, et al. TRP channels and mechanosensory transduction: insights into the arterial myogenic response. Pflugers Arch. 2008;456:529–40.

    Article  CAS  PubMed  Google Scholar 

  22. Kauffenstein G, Laher I, Matrougui K, Guerineau NC, Henrion D. Emerging role of G protein-coupled receptors in microvascular myogenic tone. Cardiovasc Res. 2012;95:223–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kauffenstein G, Tamareille S, Prunier F, Roy C, Ayer A, et al. Central role of P2Y6 UDP receptor in arteriolar myogenic tone. Arterioscler Thromb Vasc Biol. 2016;36:1598–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Mederos Y, Schnitzler M, Storch U, Gudermann T. Mechanosensitive Gq/11 protein-coupled receptors mediate myogenic vasoconstriction. Microcirculation. 2016;23:621–5.

    Article  CAS  Google Scholar 

  25. D'Angelo G, Mogford JE, Davis GE, Davis MJ, Meininger GA. Integrin-mediated reduction in vascular smooth muscle [Ca2+](i) induced by RGD-containing peptide. Am J Phys. 1997;272:H2065–70.

    CAS  Google Scholar 

  26. Davis MJ, Wu X, Nurkiewicz TR, Kawasaki J, Davis GE, et al. Integrins and mechanotransduction of the vascular myogenic response. Am J Physiol Heart Circ Physiol. 2001;280:H1427–33.

    Article  CAS  PubMed  Google Scholar 

  27. Lidington D, Schubert R, Bolz SS. Capitalizing on diversity: an integrative approach towards the multiplicity of cellular mechanisms underlying myogenic responsiveness. Cardiovasc Res. 2013;97:404–12.

    Article  CAS  PubMed  Google Scholar 

  28. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science. 2010;330:55–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saotome K, Murthy SE, Kefauver JM, Whitwam T, Patapoutian A, et al. Structure of the mechanically activated ion channel Piezo1. Nature. 2018;554:481–6.

    Article  CAS  PubMed  Google Scholar 

  30. Wang Y, Xiao B. The mechanosensitive Piezo1 channel: structural features and molecular bases underlying its ion permeation and mechanotransduction. J Physiol. 2018;596:969–78.

    Article  CAS  PubMed  Google Scholar 

  31. Wang S, Chennupati R, Kaur H, Iring A, Wettschureck N, et al. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J Clin Invest. 2016;126:4527–36.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fernandez-Tenorio M, Gonzalez-Rodriguez P, Porras C, Castellano A, Moosmang S, et al. Short communication: genetic ablation of L-type Ca2+ channels abolishes depolarization-induced Ca2+ release in arterial smooth muscle. Circ Res. 2010;106:1285–9.

    Article  CAS  PubMed  Google Scholar 

  33. Moosmang S, Schulla V, Welling A, Feil R, Feil S, et al. Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. EMBO J. 2003;22:6027–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davis MJ, Hill MA. Signaling mechanisms underlying the vascular myogenic response. Physiol Rev. 1999;79:387–423.

    Article  CAS  PubMed  Google Scholar 

  35. Schubert R, Lidington D, Bolz SS. The emerging role of Ca2+ sensitivity regulation in promoting myogenic vasoconstriction. Cardiovasc Res. 2008;77:8–18.

    CAS  PubMed  Google Scholar 

  36. de Marchi SF, Gloekler S, Rimoldi SF, Rolli P, Steck H, et al. Microvascular response to metabolic and pressure challenge in the human coronary circulation. Am J Physiol Heart Circ Physiol. 2011;301:H434–41.

    Article  PubMed  CAS  Google Scholar 

  37. Duncker DJ, Bache RJ. Regulation of coronary blood flow during exercise. Physiol Rev. 2008;88:1009–86.

    Article  CAS  PubMed  Google Scholar 

  38. Duncker DJ, Bache RJ, Merkus D. Regulation of coronary resistance vessel tone in response to exercise. J Mol Cell Cardiol. 2012;52:802–13.

    Article  CAS  PubMed  Google Scholar 

  39. Berne RM. Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Phys. 1963;204:317–22.

    Article  CAS  Google Scholar 

  40. Berne RM. The role of adenosine in the regulation of coroanry blood flow. Circ Res. 1980;47:807–13.

    Article  CAS  PubMed  Google Scholar 

  41. Bache RJ, Dai XZ, Schwartz JS, Homans DC. Role of adenosine in coronary vasodilation during exercise. Circ Res. 1988;62:846–53.

    Article  CAS  PubMed  Google Scholar 

  42. Deussen A, Ohanyan V, Jannasch A, Yin L, Chilian W. Mechanisms of metabolic coronary flow regulation. J Mol Cell Cardiol. 2012;52:794–801.

    Article  CAS  PubMed  Google Scholar 

  43. Duncker DJ, Stubenitsky R, Verdouw PD. Role of adenosine in the regulation of coronary blood flow in swine at rest and during treadmill exercise. Am J Phys. 1998;275:H1663–72.

    CAS  Google Scholar 

  44. Layland J, Carrick D, Lee M, Oldroyd K, Berry C. Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc Interv. 2014;7:581–91.

    Article  PubMed  Google Scholar 

  45. Berwick ZC, Payne GA, Lynch B, Dick GM, Sturek M, et al. Contribution of adenosine A(2A) and A(2B) receptors to ischemic coronary dilation: role of K(V) and K(ATP) channels. Microcirculation. 2010;17:600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tune JD, Richmond KN, Gorman MW, Feigl EO. Role of nitric oxide and adenosine in control of coronary blood flow in exercising dogs. Circulation. 2000;101:2942–8.

    Article  CAS  PubMed  Google Scholar 

  47. Weir EK, Lopez-Barneo J, Buckler KJ, Archer SL. Acute oxygen-sensing mechanisms. N Engl J Med. 2005;353:2042–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Ohanyan V, Yin L, Bardakjian R, Kolz C, Enrick M, et al. Requisite role of Kv1.5 channels in coronary metabolic dilation. Circ Res. 2015;117:612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Rogers PA, Dick GM, Knudson JD, Focardi M, Bratz IN, et al. H2O2-induced redox-sensitive coronary vasodilation is mediated by 4-aminopyridine-sensitive K+ channels. Am J Physiol Heart Circ Physiol. 2006;291:H2473–82.

    Article  CAS  PubMed  Google Scholar 

  50. Saitoh SI, Kiyooka T, Rocic P, Rogers PA, Zhang C, et al. Redox-dependent coronary metabolic dilation. Am J Physiol Heart Circ Physiol. 2007;293:H3720–5.

    Article  CAS  PubMed  Google Scholar 

  51. Ohanyan V, Yin L, Bardakjian R, Kolz C, Enrick M, et al. Kv1.3 channels facilitate the connection between metabolism and blood flow in the heart. Microcirculation. 2017;24:e12334.

    Article  CAS  Google Scholar 

  52. Duncker DJ, Stubenitsky R, Verdouw PD. Autonomic control of vasomotion in the porcine coronary circulation during treadmill exercise - evidence for feed-forward beta-adrenergic control. Circ Res. 1998;82:1312–22.

    Article  CAS  PubMed  Google Scholar 

  53. Gorman MW, Tune JD, Richmond KN, Feigl EO. Feedforward sympathetic coronary vasodilation in exercising dogs. J Appl Physiol. 2000;89:1892–902.

    Article  CAS  PubMed  Google Scholar 

  54. Gorman MW, Tune JD, Richmond KN, Feigl EO. Quantitative analysis of feedforward sympathetic coronary vasodilation in exercising dogs. J Appl Physiol. 2000;89:1903–11.

    Article  CAS  PubMed  Google Scholar 

  55. Gao F, de Beer VJ, Hoekstra M, Xiao C, Duncker DJ, et al. Both beta1- and beta2-adrenoceptors contribute to feedforward coronary resistance vessel dilation during exercise. Am J Physiol Heart Circ Physiol. 2010;298:H921–9.

    Article  CAS  PubMed  Google Scholar 

  56. Heusch G. The paradox of alpha-adrenergic coronary vasoconstriction revisited. J Mol Cell Cardiol. 2011;51:16–23.

    Article  CAS  PubMed  Google Scholar 

  57. Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf). 2017;219:22–96.

    Article  CAS  Google Scholar 

  58. de Wit C. Connexins pave the way for vascular communication. News Physiol Sci. 2004;19:148–53.

    PubMed  Google Scholar 

  59. Schmidt K, Windler R, de Wit C. Communication through gap junctions in the endothelium. Adv Pharmacol. 2016;77:209–40.

    Article  CAS  PubMed  Google Scholar 

  60. Badimon L, Bugiardini R, Cenko E, Cubedo J, Dorobantu M, et al. Position paper of the European Society of Cardiology-working group of coronary pathophysiology and microcirculation: obesity and heart disease. Eur Heart J. 2017;38:1951–8.

    Article  CAS  PubMed  Google Scholar 

  61. Camici PG, d'Amati G, Rimoldi O. Coronary microvascular dysfunction: mechanisms and functional assessment. Nat Rev Cardiol. 2015;12:48–62.

    Article  PubMed  Google Scholar 

  62. Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35:1101–11.

    Article  PubMed  Google Scholar 

  63. Gimbrone MAJ, Garcia-Cardena G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118:620–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Pries AR, Habazettl H, Ambrosio G, Hansen PR, Kaski JC, et al. A review of methods for assessment of coronary microvascular disease in both clinical and experimental settings. Cardiovasc Res. 2008;80:165–74.

    Article  CAS  PubMed  Google Scholar 

  65. de Wit C, Wolfle SE. EDHF and gap junctions: important regulators of vascular tone within the microcirculation. Curr Pharm Biotechnol. 2007;8:11–25.

    Article  PubMed  Google Scholar 

  66. Garland CJ, Dora KA. EDH: endothelium-dependent hyperpolarization and microvascular signalling. Acta Physiol (Oxf). 2017;219:152–61.

    Article  CAS  Google Scholar 

  67. Leung SWS, Vanhoutte PM. Endothelium-dependent hyperpolarization: age, gender and blood pressure, do they matter? Acta Physiol (Oxf). 2017;219:108–23.

    Article  CAS  Google Scholar 

  68. Murrant CL, Lamb IR, Novielli NM. Capillary endothelial cells as coordinators of skeletal muscle blood flow during active hyperemia. Microcirculation. 2017;24:e12348.

    Article  Google Scholar 

  69. Vanhoutte PM, Zhao Y, Xu A, Leung SWS. Thirty years of saying NO: sources, fate, actions, and misfortunes of the endothelium-derived vasodilator mediator. Circ Res. 2016;119:375–96.

    Article  CAS  PubMed  Google Scholar 

  70. Siragusa M, Fleming I. The eNOS signalosome and its link to endothelial dysfunction. Pflugers Arch. 2016;468:1125–37.

    Article  CAS  PubMed  Google Scholar 

  71. Campbell MG, Smith BC, Potter CS, Carragher B, Marletta MA. Molecular architecture of mammalian nitric oxide synthases. Proc Natl Acad Sci U S A. 2014;111:E3614–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Friebe A, Koesling D. The function of NO-sensitive guanylyl cyclase: what we can learn from genetic mouse models. Nitric Oxide. 2009;21:149–56.

    Article  CAS  PubMed  Google Scholar 

  73. Thunemann M, Wen L, Hillenbrand M, Vachaviolos IA, Feil S, et al. Transgenic mice for cGMP imaging. Circ Res. 2013;113:365–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hofmann F, Feil R, Kleppisch T, Schlossmann J. Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev. 2006;86:1–23.

    Article  CAS  PubMed  Google Scholar 

  75. Koeppen M, Feil R, Siegl D, Feil S, Hofmann F, et al. cGMP-dependent protein kinase mediates NO- but not acetylcholine-induced dilations in resistance vessels in vivo. Hypertension. 2004;44:952–5.

    Article  CAS  PubMed  Google Scholar 

  76. Pohl U, de Wit C. A unique role of NO in the control of blood flow. News Physiol Sci. 1999;14:74–80.

    CAS  PubMed  Google Scholar 

  77. Jones CJ, Kuo L, Davis MJ, DeFily DV, Chilian WM. Role of nitric oxide in the coronary microvascular responses to adenosine and increased metabolic demand. Circulation. 1995;91:1807–13.

    Article  CAS  PubMed  Google Scholar 

  78. Busse R, Edwards G, Feletou M, Fleming I, Vanhoutte PM, et al. EDHF: bringing the concepts together. Trends Pharmacol Sci. 2002;23:374–80.

    Article  CAS  PubMed  Google Scholar 

  79. de Wit C, Griffith TM. Connexins and gap junctions in the EDHF phenomenon and conducted vasomotor responses. Pflugers Arch. 2010;459:897–914.

    Article  PubMed  CAS  Google Scholar 

  80. Wulff H, Kohler R. Endothelial small-conductance and intermediate-conductance KCa channels: an update on their pharmacology and usefulness as cardiovascular targets. J Cardiovasc Pharmacol. 2013;61:102–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Batenburg WW, Garrelds IM, van Kats JP, Saxena PR, Danser AHJ. Mediators of bradykinin-induced vasorelaxation in human coronary microarteries. Hypertension. 2004;43:488–92.

    Article  CAS  PubMed  Google Scholar 

  82. Brahler S, Kaistha A, Schmidt VJ, Wolfle SE, Busch C, et al. Genetic deficit of SK3 and IK1 channels disrupts the endothelium-derived hyperpolarizing factor vasodilator pathway and causes hypertension. Circulation. 2009;119:2323–32.

    Article  PubMed  CAS  Google Scholar 

  83. Crane GJ, Gallagher N, Dora KA, Garland CJ. Small- and intermediate-conductance calcium-activated K+ channels provide different facets of endothelium-dependent hyperpolarization in rat mesenteric artery. J Physiol. 2003;553:183–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Miura H, Liu Y, Gutterman DD. Human coronary arteriolar dilation to bradykinin depends on membrane hyperpolarization - contribution of nitric oxide and Ca2+−activated K+ channels. Circulation. 1999;99:3132–8.

    Article  CAS  PubMed  Google Scholar 

  85. Si H, Heyken WT, Wolfle SE, Tysiac M, Schubert R, et al. Impaired endothelium-derived hyperpolarizing factor-mediated dilations and increased blood pressure in mice deficient of the intermediate-conductance Ca2+-activated K+ channel. Circ Res. 2006;99:537–44.

    Article  CAS  PubMed  Google Scholar 

  86. Milkau M, Kohler R, de Wit C. Crucial importance of the endothelial K+ channel SK3 and connexin40 in arteriolar dilations during skeletal muscle contraction. FASEB J. 2010;24:3572–9.

    Article  CAS  PubMed  Google Scholar 

  87. Edwards G, Dora KA, Gardener MJ, Garland CJ, Weston AH. K+ is an endothelium-derived hyperpolarizing factor in rat arteries. Nature. 1998;396:269–72.

    Article  CAS  PubMed  Google Scholar 

  88. Dora KA, Gallagher NT, McNeish A, Garland CJ. Modulation of endothelial cell KCa3.1 channels during endothelium-derived hyperpolarizing factor signaling in mesenteric resistance arteries. Circ Res. 2008;102:1247–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Edwards G, Feletou M, Weston AH. Endothelium-derived hyperpolarising factors and associated pathways: a synopsis. Pflugers Arch. 2010;459:863–79.

    Article  CAS  PubMed  Google Scholar 

  90. Richards GR, Weston AH, Burnham MP, Feletou M, Vanhoutte PM, et al. Suppression of K+-induced hyperpolarization by phenylephrine in rat mesenteric artery: relevance to studies of endothelium-derived hyperpolarizing factor. Br J Pharmacol. 2001;134:1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Weston AH, Richards GR, Burnham MP, Feletou M, Vanhoutte PM, et al. K+-induced hyperpolarization in rat mesenteric artery: identification, localization and role of Na+/K+-ATPases. Br J Pharmacol. 2002;136:918–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Burnham MP, Bychkov R, Feletou M, Richards GR, Vanhoutte PM, et al. Characterization of an apamin-sensitive small-conductance Ca(2+)-activated K(+) channel in porcine coronary artery endothelium: relevance to EDHF. Br J Pharmacol. 2002;135:1133–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Fisslthaler B, Popp R, Kiss L, Potente M, Harder DR, et al. Cytochrome P4502C is an EDHF synthase in coronary arteries. Nature. 1999;401:493–7.

    Article  CAS  PubMed  Google Scholar 

  94. Fleming I. The pharmacology of the cytochrome P450 epoxygenase/soluble epoxide hydrolase axis in the vasculature and cardiovascular disease. Pharmacol Rev. 2014;66:1106–40.

    Article  CAS  PubMed  Google Scholar 

  95. Fleming I. The factor in EDHF: cytochrome P450 derived lipid mediators and vascular signaling. Vasc Pharmacol. 2016;86:31–40.

    Article  CAS  Google Scholar 

  96. Imig JD. Epoxides and soluble epoxide hydrolase in cardiovascular physiology. Physiol Rev. 2012;92:101–30.

    Article  CAS  PubMed  Google Scholar 

  97. Oparil S, Schmieder RE. New approaches in the treatment of hypertension. Circ Res. 2015;116:1074–95.

    Article  CAS  PubMed  Google Scholar 

  98. Sun D, Cuevas AJ, Gotlinger K, Hwang SH, Hammock BD, et al. Soluble epoxide hydrolase-dependent regulation of myogenic response and blood pressure. Am J Physiol Heart Circ Physiol. 2014;306:H1146–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium-dependent responses. Pflugers Arch. 2010;459:881–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fleming I, Michaelis UR, Bredenkotter D, Fisslthaler B, Dehghani F, et al. Endothelium-derived hyperpolarizing factor synthase (Cytochrome P4502C9) is a functionally significant source of reactive oxygen species in coronary arteries. Circ Res. 2001;88:44–51.

    Article  CAS  PubMed  Google Scholar 

  101. Zinkevich NS, Fancher IS, Gutterman DD, Phillips SA. Roles of NADPH oxidase and mitochondria in flow-induced vasodilation of human adipose arterioles: ROS-induced ROS release in coronary artery disease. Microcirculation. 2017;24:e12380.

    Article  CAS  Google Scholar 

  102. Ray R, Murdoch CE, Wang M, Santos CX, Zhang M, et al. Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo. Arterioscler Thromb Vasc Biol. 2011;31:1368–76.

    Article  CAS  PubMed  Google Scholar 

  103. Schroder K, Zhang M, Benkhoff S, Mieth A, Pliquett R, et al. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase. Circ Res. 2012;110:1217–25.

    Article  PubMed  CAS  Google Scholar 

  104. Liu Y, Bubolz AH, Mendoza S, Zhang DX, Gutterman DD. H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles. Circ Res. 2011;108:566–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Griffith TM. Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? Br J Pharmacol. 2004;141:881–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. de Wit C, Boettcher M, Schmidt VJ. Signaling across myoendothelial gap junctions - fact or fiction? Cell Commun Adhes. 2008;15:231–45.

    Article  PubMed  CAS  Google Scholar 

  107. Jobs A, Schmidt K, Schmidt VJ, Lubkemeier I, van Veen TAB, et al. Defective Cx40 maintains Cx37 expression but intact Cx40 is crucial for conducted dilations irrespective of hypertension. Hypertension. 2012;60:1422–9.

    Article  CAS  PubMed  Google Scholar 

  108. Siegl D, Koeppen M, Wolfle SE, Pohl U, de Wit C. Myoendothelial coupling is not prominent in arterioles within the mouse cremaster microcirculation in vivo. Circ Res. 2005;97:781–8.

    Article  CAS  PubMed  Google Scholar 

  109. Schmidt VJ, Wolfle SE, Boettcher M, de Wit C. Gap junctions synchronize vascular tone within the microcirculation. Pharmacol Rep. 2008;60:68–74.

    CAS  PubMed  Google Scholar 

  110. de Wit C, Roos F, Bolz SS, Kirchhoff S, Kruger O, et al. Impaired conduction of vasodilation along arterioles in connexin40 deficient mice. Circ Res. 2000;86:649–55.

    Article  PubMed  Google Scholar 

  111. Wolfle SE, Schmidt VJ, Hoepfl B, Gebert A, Alcolea S, et al. Connexin45 cannot replace the function of connexin40 in conducting endothelium-dependent dilations along arterioles. Circ Res. 2007;101:1292–9.

    Article  PubMed  CAS  Google Scholar 

  112. Bagher P, Segal SS. Regulation of blood flow in the microcirculation: role of conducted vasodilation. Acta Physiol (Oxf). 2011;202:271–84.

    Article  CAS  PubMed Central  Google Scholar 

  113. Segal SS. Regulation of blood flow in the microcirculation. Microcirculation. 2005;12:33–45.

    Article  PubMed  Google Scholar 

  114. Welsh DG, Tran CHT, Hald BO, Sancho M. The conducted vasomotor response: function, biophysical basis, and pharmacological control. Annu Rev Pharmacol Toxicol. 2018;58:391–410.

    Article  CAS  PubMed  Google Scholar 

  115. Straub AC, Zeigler AC, Isakson BE. The myoendothelial junction: connections that deliver the message. Physiology (Bethesda). 2014;29:242–9.

    CAS  Google Scholar 

  116. Hald BO, Jacobsen JCB, Sandow SL, Holstein-Rathlou NH, Welsh DG. Less is more: minimal expression of myoendothelial gap junctions optimizes cell-cell communication in virtual arterioles. J Physiol. 2014;592:3243–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hald BO, Welsh DG, Holstein-Rathlou NH, Jacobsen JCB. Origins of variation in conducted vasomotor responses. Pflugers Arch. 2015;467:2055–67.

    Article  CAS  PubMed  Google Scholar 

  118. Beyer AM, Durand MJ, Hockenberry J, Gamblin TC, Phillips SA, et al. An acute rise in intraluminal pressure shifts the mediator of flow-mediated dilation from nitric oxide to hydrogen peroxide in human arterioles. Am J Physiol Heart Circ Physiol. 2014;307:H1587–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Beyer AM, Zinkevich N, Miller B, Liu Y, Wittenburg AL, et al. Transition in the mechanism of flow-mediated dilation with aging and development of coronary artery disease. Basic Res Cardiol. 2017;112:5.

    Article  PubMed  CAS  Google Scholar 

  120. Boettcher M, de Wit C. Distinct endothelium-derived hyperpolarizing factors emerge in vitro and in vivo and are mediated in part via connexin 40-dependent myoendothelial coupling. Hypertension. 2011;57:802–8.

    Article  CAS  PubMed  Google Scholar 

  121. Durand MJ, Gutterman DD. Diversity in mechanisms of endothelium-dependent vasodilation in health and disease. Microcirculation. 2013;20:239–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Freed JK, Beyer AM, LoGiudice JA, Hockenberry JC, Gutterman DD. Ceramide changes the mediator of flow-induced vasodilation from nitric oxide to hydrogen peroxide in the human microcirculation. Circ Res. 2014;115:525–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. LeBlanc AJ, Hoying JB. Adaptation of the coronary microcirculation in aging. Microcirculation. 2016;23:157–67.

    Article  PubMed  Google Scholar 

  124. Duncker DJ, Merkus D. Exercise hyperaemia in the heart: the search for the dilator mechanism. J Physiol. 2007;583:847–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Larsen BT, Gutterman DD, Sato A, Toyama K, Campbell WB, et al. Hydrogen peroxide inhibits cytochrome p450 epoxygenases: interaction between two endothelium-derived hyperpolarizing factors. Circ Res. 2008;102:59–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cor de Wit .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Wit, C. (2020). Basic Concepts of the Microcirculation. In: Dorobantu, M., Badimon, L. (eds) Microcirculation. Springer, Cham. https://doi.org/10.1007/978-3-030-28199-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28199-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28198-4

  • Online ISBN: 978-3-030-28199-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics