Skip to main content

Power-Law Citation Distributions are Not Scale-Free

  • Chapter
  • First Online:
Citation Analysis and Dynamics of Citation Networks

Part of the book series: SpringerBriefs in Complexity ((BRIEFSCOMPLEXITY))

  • 554 Accesses

Abstract

We analyze time evolution of statistical distributions of citations to scientific papers published in the same year. While these distributions seem to follow the power-law dependence, we find that they are nonstationary and the exponent of the power-law fit decreases with time and does not come to saturation. We attribute the nonstationarity of citation distributions to different longevity of the low-cited and highly-cited papers. By measuring citation trajectories of papers, we found that citation careers of the low-cited papers come to saturation after 10–15 years while those of the highly-cited papers continue to increase indefinitely. When the number of citations of a paper exceeds some citation threshold, it becomes a runaway. Thus, we show that although citation distribution can look as a power-law dependence, it is not scale-free and there is a hidden dynamic scale associated with the onset of runaways. We show that our model of citation dynamics based on copying/redirection/triadic closure accounts for these issues fairly well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albarrán, P., Crespo, J. A., Ortuño, I., & Ruiz-Castillo, J. (2011). The skewness of science in 219 sub-fields and a number of aggregates. Scientometrics, 88(2), 385–397.

    Article  Google Scholar 

  2. Albert, R., & Barabasi, A. L. (2002). Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47–97.

    Article  ADS  MathSciNet  Google Scholar 

  3. Barabasi, A. L. (2015). Network science. Cambridge: Cambridge University Press.

    MATH  Google Scholar 

  4. Baumgartner, S. E., & Leydesdorff L. (2013). Group-based trajectory modeling (GBTM) of citations in scholarly literature: Dynamic qualities of “transient” and “sticky knowledge claims”. Journal of the Association for Information Science and Technology, 65(4), 797–811.

    Article  Google Scholar 

  5. Bianconi, G., & Barabasi, A.-L. (2001). Bose-Einstein condensation in complex networks. Physical Review Letters, 86, 5632–5635.

    Article  ADS  Google Scholar 

  6. Broido, A. D., & Clauset, A. (2019). Scale-free networks are rare. Nature Communications, 10(1), 1017.

    Article  ADS  Google Scholar 

  7. Brzezinski, M. (2015). Power laws in citation distributions: evidence from Scopus. Scientometrics, 103(1), 213–228.

    Article  MathSciNet  Google Scholar 

  8. Burrell, Q. L. (2005). The use of the generalized Waring process in modelling informetric data. Scientometrics, 64(3), 247–270.

    Article  Google Scholar 

  9. Caldarelli, G. (2007). Scale-free networks: Complex webs in nature and technology. Oxford: Oxford University Press.

    Book  Google Scholar 

  10. Clauset, A., Shalizi, C., & Newman, M. (2009). Power-law distributions in empirical data. SIAM Review, 51(4), 661–703.

    Article  ADS  MathSciNet  Google Scholar 

  11. Csárdi, G., Strandburg, K. J., Zalányi, L., Tobochnik, J., & Érdi, P. (2007). Modeling innovation by a kinetic description of the patent citation system. Physica A: Statistical Mechanics and Its Applications, 374(2), 783–793.

    Article  ADS  Google Scholar 

  12. de Solla Price, D. J. (1965). Networks of scientific papers. Science, 149(3683), 510–515.

    Article  ADS  Google Scholar 

  13. Dorogovtsev, S. N., & Mendes, J. F. F. (2001). Scaling properties of scale-free evolving networks: Continuous approach. Physical Review E, 63(5), 056125.

    Article  ADS  Google Scholar 

  14. Evans, T. S., Hopkins, N., & Kaube, B. S. (2012). Universality of performance indicators based on citation and reference counts. Scientometrics, 93(2), 473–495.

    Article  Google Scholar 

  15. Glanzel, W. (2004). Towards a model for diachronous and synchronous citation analyses. Scientometrics, 60(3), 511–522.

    Article  Google Scholar 

  16. Golosovsky, M. (2017). Power-law citation distributions are not scale-free. Physical Review E, 96(3), 032306.

    Article  ADS  Google Scholar 

  17. Golosovsky, M., & Solomon, S. (2012). Runaway events dominate the heavy tail of citation distributions. The European Physical Journal, 205(1), 303–311.

    ADS  Google Scholar 

  18. Higham, K. W., Governale, M., Jaffe, A. B., & Zülicke, U. (2017). Fame and obsolescence: Disentangling growth and aging dynamics of patent citations. Physical Review E, 95(4), 042309.

    Article  ADS  Google Scholar 

  19. Kong, J. S., Sarshar, N., & Roychowdhury, V. P. (2008). Experience versus talent shapes the structure of the Web. Proceedings of the National Academy of Sciences, 105(37), 13724–13729.

    Article  ADS  Google Scholar 

  20. Krapivsky, P. L., & Redner, S. (2001). Organization of growing random networks. Physical Review E, 63(6), 066123.

    Article  ADS  Google Scholar 

  21. Lehmann, S., Jackson, A. D., & Lautrup, B. (2005). Life, death and preferential attachment. Europhysics Letters, 69(2), 298–303.

    Article  ADS  Google Scholar 

  22. Leskovec, J., Kleinberg, J., & Faloutsos, C. (2007). Graph evolution: Densification and shrinking diameters. ACM Transactions on Knowledge Discovery from Data (TKDD), 1(1), 2.

    Article  Google Scholar 

  23. Limpert, E., Stahel, W. A., & Abbt, M. (2001). Log-normal distributions across the sciences: Keys and clues. BioScience, 51(5), 341–352.

    Article  Google Scholar 

  24. Mingers, J., & Burrell, Q. L. (2006). Modeling citation behavior in Management Science journals. Information Processing & Management, 42(6), 1451–1464.

    Article  Google Scholar 

  25. Mitzenmacher, M. (2004). A brief history of generative models for power law and lognormal distributions. Internet Mathematics, 1(2), 226–251.

    Article  MathSciNet  Google Scholar 

  26. Mitzenmacher, M. (2005). Editorial: The future of power law research. Internet Mathematics, 2(4), 525–534.

    Article  Google Scholar 

  27. Mokryn, O., & Reznik, A. (2015). On skewed distributions and straight lines. In Proceedings of the 24th International Conference on World Wide Web. New York, NY: Association for Computing Machinery.

    Google Scholar 

  28. Newman, M. E. (2005). Power Laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323–351.

    Article  ADS  Google Scholar 

  29. Pinto, C. M. A., Lopes, A. M., & Machado, J. A. T. (2012). A review of power laws in real life phenomena. Communications in Nonlinear Science and Numerical Simulation, 17(9), 3558–3578.

    Article  ADS  MathSciNet  Google Scholar 

  30. Redner, S. (1998). How popular is your paper? An empirical study of the citation distribution. The European Physical Journal B, 4(2), 131–134.

    Article  ADS  Google Scholar 

  31. Redner, S. (2005). Citation statistics from 110 years of Physical Review. Physics Today, 58(6), 49–54.

    Article  Google Scholar 

  32. Sornette, D. (2012). Probability distributions in complex systems. In Computational complexity (pp. 2286–2300). New York, NY: Springer.

    Chapter  Google Scholar 

  33. Stringer, M. J., Sales-Pardo, M., & Amaral, L. A. N. (2008). Effectiveness of journal ranking schemes as a tool for locating information. PLoS One, 3(2), e1683.

    Article  ADS  Google Scholar 

  34. Stumpf, M. P. H., & Porter, M. A. (2012). Critical truths about power laws. Science, 335(6069), 665–666.

    Article  ADS  MathSciNet  Google Scholar 

  35. Thelwall, M. (2016). The discretised lognormal and hooked power law distributions for complete citation data: Best options for modelling and regression. Journal of Informetrics, 10(2), 336–346.

    Article  Google Scholar 

  36. Vazquez, A. (2003). Growing network with local rules: Preferential attachment, clustering hierarchy, and degree correlations. Physical Review E, 67, 056104.

    Article  ADS  Google Scholar 

  37. Willinger, W., Alderson, D., & Doyle, J. C. (2009). Mathematics and the Internet: A source of enormous confusion and great potential. Notices of the AMS, 56(5), 586–599.

    MathSciNet  MATH  Google Scholar 

  38. Zhou, S., & Mondragon. R. J. (2004). Accurately modeling the internet topology. Physical Review E, 70, 066108.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Golosovsky, M. (2019). Power-Law Citation Distributions are Not Scale-Free. In: Citation Analysis and Dynamics of Citation Networks. SpringerBriefs in Complexity. Springer, Cham. https://doi.org/10.1007/978-3-030-28169-4_8

Download citation

Publish with us

Policies and ethics