Skip to main content

Part of the book series: Subcellular Biochemistry ((SCBI,volume 93))

Abstract

Monoclonal based therapeutics have always been looked at as a futuristic natural way we could take care of pathogens and many diseases. However, in order to develop, establish and realize monoclonal based therapy we need to understand how the immune system contains or kill pathogens. Antibody complexes serve the means to decode this black box. We have discussed examples of antibody complexes both at biochemical and structural levels to understand and appreciate how discoveries in the field of antibody complexes have started to decoded mechanism of viral invasion and create potential vaccine targets against many pathogens. Antibody complexes have made advancement in our knowledge about the molecular interaction between antibody and antigen. It has also led to identification of potent protective monoclonal antibodies. Further use of selective combination of monoclonal antibodies have provided improved protection against deadly diseases. The administration of newly designed and improved immunogen has been used as potential vaccine. Therefore, antibody complexes are important tools to develop new vaccine targets and design an improved combination of monoclonal antibodies for passive immunization or protection with very little or no side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboudola S, Kotloff KL, Kyne L, Sougioultzis S et al (2003) Clostridium difficile vaccine and serum immunoglobulin G antibody response to toxin A. Infect Immun. 71:1608–1610

    Google Scholar 

  • Abreu-Mota T, Hagen KR, Cooper K et al (2018) Non-neutralizing antibodies elicited by recombinant Lassa-Rabies vaccine are critical for protection against Lassa fever. Nat Commun 9(1):4223. https://doi.org/10.1038/s41467-018-06741-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akhouri RR, Goel S, Furusho H et al (2016) Architecture of human IgM in complex with P. falciparum erythrocyte membrane protein 1. Cell Rep. 14:723–736

    Article  CAS  PubMed  Google Scholar 

  • Amon R, Reuven EM, Leviatan Ben-Arye S et al (2014) Carbohydr Res 389:115–22. https://doi.org/10.1016/j.carres.2014.02.004

  • Arunkumar GA, Ioannou A, Wohlbold TJ et al (2019) Broadly cross-reactive, non-neutralizing antibodies against the influenza B virus hemagglutinin demonstrate effector function dependent protection against lethal viral challenge in mice. J Virol pii: JVI.01696-18. https://doi.org/10.1128/jvi.01696-18

  • Babcock GJ, Broering Teresa J et al (2006) Human monoclonal antibodies directed against Toxins A and B Prevent Clostridium difficile-induced mortality in hamsters. Infect Immun 74:6339–6347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey JR, Flyak AI, Cohen VJ et al (2017) Broadly neutralizing antibodies with few somatic mutations and hepatitis C virus clearance. JCI Insight. 2:92872

    Article  PubMed  Google Scholar 

  • Bartesaghi A, Merk A, Borgnia MJ et al (2013) Prefusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy. Nat Struct Mol Biol 20:1352–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baruch DI, Pasloske B, Singh HB et al (1995) Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82:77–87

    Google Scholar 

  • Binley JM, Sanders RW, Master A et al (2002) Enhancing the proteolytic maturation of human immunodeficiency virus type 1 envelope glycoproteins. J Virol 76:2606–2616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas AK, Hafiz A, Banerjee B et al (2007) Plasmodium falciparum uses gC1qR/HABP1/p32 as a receptor to bind to vascular endothelium and for platelet-mediated clumping. PLoS Pathog 3:1271–1280

    Article  CAS  PubMed  Google Scholar 

  • Boes M (2000) Role of natural and immune IgM antibodies in immune responses. Mol Immunol 37:1141–1149

    Article  CAS  PubMed  Google Scholar 

  • Bongini L, Fanelli D, Piazza F et al (2007) A dynamical study of antibody-antigen encounter reactions. Phys Biol 4:172–180

    Article  CAS  PubMed  Google Scholar 

  • Bongini L, Fanelli D, Piazza F et al (2004) Freezing immunoglobulins to see them move. Proc Natl Acad Sci 101:6466–6471

    Article  CAS  PubMed  Google Scholar 

  • Bongini L, Fanelli D, Piazza F et al (2005) Dynamics of antibodies from cryo-electron tomography. Biophys Chem 115:235–240

    Article  CAS  PubMed  Google Scholar 

  • Borghesi L, Milcarek C (2006) From B cell to plasma cell: regulation of V(D)J recombination and antibody secretion. Immunol Res 36:27–32

    Article  CAS  PubMed  Google Scholar 

  • Broering TJ, Garrity KA, Boatright NK et al (2009) Identification and characterization of broadly neutralizing human monoclonal antibodiesdirected against the E2 envelope glycoprotein of hepatitis C virus. J Virol 83:12473–12482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan DC, Fass D, Berger JM et al (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273

    Article  CAS  PubMed  Google Scholar 

  • Chehadeh W, Halim MA, Al-Nakib W (2009) Antibody mediated opsonization of red blood cells in parvovirus B19 infection. Virology 390:56–63. https://doi.org/10.1016/j.virol.2009.04.016

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Park YB, Patel E et al (2009) IgM antibodies to apoptosis-associated determinants recruit C1q and enhance dendritic cell phagocytosis of apoptotic cells. J Immunol 182:6031–6043. https://doi.org/10.4049/jimmunol.0804191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corti D, Misasi J, Mulangu S et al (2016) Protective monotherapy against lethal Ebola virus infection by a potently neutralizing antibody. Science 351:1339–1342

    Article  CAS  PubMed  Google Scholar 

  • Coutinho A, Kazatchkine MD, Avrameas S (1995) Natural autoantibodies. Curr Opin Immunol 7:812–818

    Article  CAS  PubMed  Google Scholar 

  • Crowley J, Chu C, Love GM et al (2010) Malaria in children. Lancet 375:1468–1481

    Article  Google Scholar 

  • Czajkowsky DM, Shao Z (2009) The human IgM pentamer is a mushroom-shaped molecule with a flexural bias. Proc Natl Acad Sci U S A. 106:14960–14965

    Article  PubMed  PubMed Central  Google Scholar 

  • Doolan DL, Dobaño C, Baird JK (2009) Acquired immunity to malaria. Clin Microbiol Rev 22:13–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dudley DD, Chaudhuri J, Bassing CH et al (2005) Mechanism and control of V(D)J recombination versus class switch recombination: similarities and differences. Adv Immunol 86:43–112

    Article  CAS  PubMed  Google Scholar 

  • Feinstein A, Munn EA (1969) Conformation of the free and antigen-bound IgM antibody molecules. Nature 224:1307–1309

    Article  CAS  PubMed  Google Scholar 

  • Fellah JS, Wiles MV, Charlemagne J et al (1992) Evolution of vertebrate IgM: complete amino acid sequence of the constant region of Ambystoma mexicanum mu chain deduced from cDNA sequence. Eur J Immunol 22:2595–2601

    Article  CAS  PubMed  Google Scholar 

  • Flyak AI, Ilinykh PA, Murin CD et al (2015) Mechanism of human antibody mediated neutralization of Marburg virus. Cell 160:893–903. https://doi.org/10.1016/j.cell.2015.01.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco S, Tural C, Nevot M et al (2014) Detection of a sexually transmitted hepatitis C virus protease inhibitor-resistance variant in a human immunodeficiency virus-infected homosexual man. Gastroenterology 147:599–601

    Article  PubMed  Google Scholar 

  • Fuentes-Panana EM, Bannish G, Monroe JG (2004) Basal B-cell receptor signaling in B lymphocytes: mechanisms of regulation and role in positive selection, differentiation, and peripheral survival. Immunol Rev 197:26–40

    Article  CAS  PubMed  Google Scholar 

  • Galanti M, Fanelli D, Piazza F (2016) Conformation-controlled binding kinetics of antibodies. Sci Rep 6:18976. https://doi.org/10.1038/srep18976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garces F, Lee JH, de Val N et al (2015) Affinity maturation of a potent family of HIV antibodies is primarily focused on accommodating or avoiding Glycans. Immunity 43:1053–1063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner MJ, Hall N, Fung E et al (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498–511

    Article  CAS  PubMed  Google Scholar 

  • Georgiev IS, Joyce MG, Yang Y et al (2015) Single-chain soluble BG505·SOSIP gp140 trimers as structural and antigenic mimics of mature closed HIV-1 Env. J Virol 89:5318–5329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76:287–299

    Article  CAS  PubMed  Google Scholar 

  • Gherardi E, Sandin S, Petoukhov MV et al (2006) Structural basis of hepatocyte growth factor/scatter factor and MET signalling. Proc Natl Acad Sci 103:4046–4051

    Article  CAS  PubMed  Google Scholar 

  • Goel S, Pamkvist M, Moll K et al (2015). RIFINs are adhesins implicated in severe Plasmodium falciparum malaria. Nat Med 21:314–317

    Google Scholar 

  • Gopal R, Jackson K, Tzarum N et al (2017) Probing the antigenicity of hepatitis C virus envelope glycoprotein complex by high-throughputmutagenesis. PLoS Pathog 13:e1006735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gravitz L (2011) Introduction: a smouldering public-health crisis. Nature 474:2–4

    Article  CAS  Google Scholar 

  • Harris LJ, Larson SB, Hasel KW et al (1992) The three-dimensional structure of an intact monoclonal antibody for canine lymphoma. Nature 360:369–372

    Article  CAS  PubMed  Google Scholar 

  • Harris LJ, Larson SB, Skaletsky E et al (1998) Comparison of the conformations of two intact monoclonal antibodies with hinges. Immunol Rev 163:35–43

    Article  CAS  PubMed  Google Scholar 

  • Haury M, Sundblad A, Grandien A et al (1997) The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur J Immunol 27:1557–1563

    Article  CAS  PubMed  Google Scholar 

  • Haynes BF, Moody MA, Verkoczy L et al (2005) Antibody polyspecificity and neutralization of HIV-1: a hypothesis. Hum Antibodies. 14:59–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Hippocrates (1959) On the nature of man. Harvard University Press, Cambridge, MA

    Google Scholar 

  • Holmberg SD, Spradling PR, Moorman AC et al (2013) Hepatitis C in the United States. N Engl J Med 368:1859–1861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoofnagle JH (2002) Course and outcome of hepatitis C. Hepatology 36:21–29

    Google Scholar 

  • Janeway CA Jr, Travers P, Walport M et al (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New York

    Google Scholar 

  • Jefferis R (2009) Glycosylation as a strategy to improve antibody-based therapeutics. Nat Rev Drug Discov 8:226–234. https://doi.org/10.1038/nrd2804

  • Julien JP, Cupo A, Sok D et al (2013a) Crystal structure of a soluble cleaved HIV-1 envelope trimer. Science 342:1477–1483

    Article  CAS  PubMed  Google Scholar 

  • Julien JP, Lee JH, Cupo A et al (2013b) Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9. Proc Natl Acad Sci U S A. 110:4351–4356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katzelnick LC, Montoya M, Gresh L et al (2016) Neutralizing antibody titers against dengue virus correlate with protection from symptomatic infection in a longitudinal cohort. Proc Natl Acad Sci USA 113:728–733. https://doi.org/10.1073/pnas.1522136113

    Article  CAS  PubMed  Google Scholar 

  • Khayat R, Lee JH, Julien JP et al (2013) Structural characterization of cleaved, soluble HIV-1 envelope glycoprotein trimers. J Virol 87:9865–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim MS, Chuenchor W, Chen X et al (2018) Cracking the DNA code for V(D)J recombination. Mol Cell 70:358–370. https://doi.org/10.1016/j.molcel.2018.03.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kindred B, Shreffler DC (1972) H-2 dependence of co-operation between T and B cells in vivo. J Immunol 109:940–943

    CAS  PubMed  Google Scholar 

  • Kisalu NK, Idris AH, Weidle C et al (2018) A human monoclonal antibody prevents malaria infection by targeting a new site of vulnerability on the parasite. Nat Med 24:408–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klasse PJ, Depetris RS, Pejchal R et al (2013) Influences on trimerization and aggregation of soluble, cleaved HIV-1 SOSIP envelope glycoprotein. J Virol 87:9873–9885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong L, Giang E, Nieusma T et al (2012a) Structure of hepatitis C virus envelope glycoprotein E2 antigenic site 412 to 423 in complex with antibody AP33. J Virol 86:13085–13088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong L, Giang E, Robbins JB et al (2012b) Structural basis of hepatitis C virus neutralization by broadly neutralizing antibody HCV1. Proc Natl Acad Sci U S A. 109:9499–9504

    Article  PubMed  PubMed Central  Google Scholar 

  • Kwong PD, Wyatt R, Robinson J et al (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagging LM, Westin J, Svensson E et al (2002) Progression of fibrosis in untreated patients with hepatitis C virus infection. Liver 22:136–144

    Article  PubMed  Google Scholar 

  • Law M, Maruyama T, Lewis J et al (2008) Broadly neutralizing antibodies protect against hepatitis C virus quasispecies challenge. Nat Med 14:25–27

    Article  CAS  PubMed  Google Scholar 

  • Lawrence MG, Woodfolk JA, Schuyler AJ et al (2017) Half-life of IgE in serum and skin: consequences for anti IgE therapy in patients with allergic disease. J Allergy Clin Immunol. 139:422–428

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Fusco ML, Hessell AJ et al (2008) Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature 454:177–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JH, Ozorowski G, Ward AB (2016) Cryo-EM structure of a native, fully glycosylated, cleaved HIV-1 envelope trimer. Science 351:1043–1048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Pierce BG, Wang Q et al (2015) Structural basis for penetration of the glycan shield of hepatitis C virus E2 glycoprotein by a broadly neutralizing human antibody. J Biol Chem 290:10117–10125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Bartesaghi A, Borgnia MJ et al (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu X, Xiao H, Li S, Pang X, Song J et al (2019) Double lock of a human neutralizing and protective monoclonal antibody targeting the yellow fever virus envelope. Cell Rep. 26:438–446. https://doi.org/10.1016/j.celrep.2018.12.065

    Article  CAS  PubMed  Google Scholar 

  • Lyumkis D, Julien JP, de Val N et al (2013) Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 342:1484–1490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maizels N (2005) Immunoglobulin gene diversification. Annu Rev Genet 39:23–46

    Article  CAS  PubMed  Google Scholar 

  • Marquardt D, McCrone S, Center MS (1990) Mechanisms of multidrug resistance in HL60 cells: detection of resistance-associated proteins with antibodies against synthetic peptides that correspond to the deduced sequence of P-glycoprotein. Cancer Res 50:1426–1430

    CAS  PubMed  Google Scholar 

  • Maruyama T, Rodriguez LL, Jahrling PB et al (1999) Ebola virus can be effectively neutralized by antibody produced in natural human infection. J Virol 73:6024–6030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meola A, Tarr AW, England P et al (2015) Structural flexibility of a conserved antigenic region in hepatitisvirus glycoprotein E2 recognized by broadly neutralizing antibodies. J Virol 89:2170–2181

    Article  CAS  PubMed  Google Scholar 

  • Meunier JC, Russell RS, Goossens V et al (2008) Isolation and characterization of broadly neutralizing human monoclonal antibodies to the e1glycoprotein of hepatitis C virus. J Virol 82:966–973

    Article  CAS  PubMed  Google Scholar 

  • Micoli F, Rondini S, Alfini R et al (2018) Comparative immunogenicity and efficacy of equivalent outer membrane vesicle and glycoconjugate vaccines against nontyphoidal Salmonella. Proc Natl Acad Sci U S A. 115:10428–10433. https://doi.org/10.1073/pnas.1807655115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LH, Baruch DI, Marsh K et al (2002) The pathogenic basis of malaria. Nature 415:673–679

    Article  CAS  PubMed  Google Scholar 

  • Mimura Y, Lund J, Church S et al (2001) Butyrate increases production of human chimeric IgG in CHO-K1 cells whilst maintaining function and glycoform profile. J Immunol Methods 247:205–216

    Article  CAS  PubMed  Google Scholar 

  • Murin CD, Fusco ML, Bornholdt ZA et al (2014) Structures of protective antibodies reveal sites of vulnerability on Ebola virus. Proc Natl Acad Sci U S A. 111:17182–17187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murphy KP, Travers P, Walport M (2008) Janeway’s immunobiology,7th edn. Garland Science, New York

    Google Scholar 

  • Noris M, Remuzzi G (2013) Overview of complement activation and regulation. Semin Nephrol 33(6):479–492. https://doi.org/10.1016/j.semnephrol.2013.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Meara WP, Mwangi TW, Williams et al (2008) Relationship between exposure, clinical malaria, and age in an area of changing transmission intensity. Am J Trop Med Hyg 79:185–191

    Google Scholar 

  • Ogden CA, Kowalewski R, Peng Y et al (2005) IGM is required for efficient complement mediated phagocytosis of apoptotic cells in vivo. Autoimmunity 38:259–264

    Article  CAS  PubMed  Google Scholar 

  • Olinger GG Jr, Pettitt J, Kim D et al (2012) Delayed treatment of Ebola virus infection with plant-derived monoclonal antibodies provides protection in rhesus macaques. Proc Natl Acad Sci U S A. 109:18030–18035

    Article  PubMed  PubMed Central  Google Scholar 

  • Oswald WB, Geisbert TW, Davis KJ et al (2007) Neutralizing antibody fails to impact the course of Ebola virus infection in monkeys. PLoS Pathog 3:e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyen D, Torres JL, Cottrell CA et al (2018) Cryo-EM structure of P. falciparum circumsporozoite protein with a vaccine-elicited antibody is stabilized by somatically mutated inter-Fab contacts. Sci Adv 4:eaau8529

    Google Scholar 

  • Oyen D, Torres JL, Wille-Reece U et al (2017) Structural basis for antibody recognition of the NANP repeats in Plasmodium falciparum circumsporozoite protein. Proc Natl Acad Sci U S A. 114:E10438–E10445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pancera M, Zhou T, Druz A et al (2014) Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature 514:455–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parren PW, Geisbert TW, Maruyama T et al (2002) Pre- and postexposure prophylaxis of Ebola virus infection in an animal model by passive transfer of a neutralizing human antibody. J Virol 76:6408–6412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paterson Y, Englander SW, Roder H (1990) An antibody binding site on cytochrome c defined by hydrogen exchange and two-dimensional NMR. Science 249:755–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauthner MG, Nkolola JP, Havenar-Daughton C et al (2018) Vaccine-induced protection from homologous Tier 2 SHIV challenge in nonhuman primates depends on serum-neutralizing antibody titers. Immunity 50:241–252. https://doi.org/10.1016/j.immuni.2018.11.011

    Article  CAS  PubMed  Google Scholar 

  • Perkins SJ, Nealis AS, Sutton BJ et al (1991) Solution structure of human and mouse immunoglobulin M by synchrotron X-ray scattering and molecular graphics modelling. A possible mechanism for complement activation. J Mol Biol 221:1345–1366

    Article  CAS  PubMed  Google Scholar 

  • Petrušić V, Živković I, Stojanović M et al (2011) Hexameric immunoglobulin M in humans: desired or unwanted? Med Hypotheses 77:959–961

    Article  CAS  PubMed  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera? A visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Google Scholar 

  • Piazza F, De Los Rios P, Fanelli D et al (2005) Anti-cooperativity in diffusion-controlled reactions with pairs of anisotropic domains: a model for the antigen-antibody encounter. Eur Biophys J 34:899–911

    Article  CAS  PubMed  Google Scholar 

  • Pier GB, Lyczak JB, Wetzler LM (2004) Immunology, infection, and immunity. ASM Press. ISBN 1-55581-246-5

    Google Scholar 

  • Pierce BG, Keck ZY, Lau P et al (2016) Global mapping of antibody recognition of the hepatitis C virus E2 glycoprotein: implications for vaccine design. Proc Natl Acad Sci U S A. 113:E6946–E6954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisetsky DS (1997) Specificity and immunochemical properties of antibodies to bacterial DNA. Methods 11:55–61

    Article  CAS  PubMed  Google Scholar 

  • Pisetsky DS (1998) Antibody responses to DNA in normal immunity and aberrant immunity. Clin Diagn Lab Immunol 5:1–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Potter JA, Owsianka AM, Jeffery N et al (2012) Toward a hepatitis C virus vaccine: the structural basis of hepatitis C virus neutralization by AP33, a broadly neutralizing antibody. J Virol 86:12923–12932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • PyMOL software. http://www.pymol.org

  • Quartier P, Potter PK, Ehrenstein MR et al (2005) Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol 35:252–260

    Article  CAS  PubMed  Google Scholar 

  • Randall TD, Brewer JW, Corley RB (1992) Direct evidence that J chain regulates the polymeric structure of IgM in antibody-secreting B cells. J Biol Chem 267:18002–18007

    CAS  PubMed  Google Scholar 

  • Randall TD, King LB, Corley RB (1990) The biological effects of IgM hexamer formation. Eur J Immunol 20:1971–1979

    Article  CAS  PubMed  Google Scholar 

  • Rayner LE, Kadkhodayi-Kholghi N, Heenan et al (2013) The solution structure of rabbit IgG accounts for its interactions with the Fc receptor and complement C1q and its conformational stability. J Mol Biol 425:506–523

    Google Scholar 

  • Robbiani DF, Bozzacco L, Keeffe JR et al (2017) Recurrent potent human neutralizing antibodies to Zika Virus in Brazil and Mexico. Cell 169:597–609.e11. https://doi.org/10.1016/j.cell.2017.04.024

  • Roberts DJ, Pain A, Kai O et al (2000) Autoagglutination of malaria-infected red blood cells and malaria severity. Lancet 355:1427–1428

    Article  CAS  PubMed  Google Scholar 

  • Roche PA, Cresswell P (1991) Proteolysis of the class II-associated invariant chain generates a peptide binding site in intracellular HLA-DR molecules. Proc Natl Acad Sci U S A. 88:3150–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenthal AS, Shevach EM (1973) Function of macrophages in antigen recognition by guinea pig T lymphocytes. I. Requirement for histocompatible macrophages and lymphocytes. J Exp Med 138:1194–1212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudkin FM, Raziunaite I, Workman H et al (2018) Single human B cell-derived monoclonal anti-Candida antibodies enhance phagocytosis and protect against disseminated candidiasis. Nat Commun. 9:5288. https://doi.org/10.1038/s41467-018-07738-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saito F, Hirayasu K, Satoh T et al (2017) Immune evasion of Plasmodium falciparum by RIFIN via inhibitory receptors. Nature 552:101–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders RW, de Jong EC, Baldwin CE et al (2002) Differential transmission of human immunodeficiency virus type 1 by distinct subsets of effector dendritic cells. J Virol 76:7812–7821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders RW, Moore JP (2017) Native-like Env trimers as a platform for HIV-1 vaccine design. Immunol Rev 275:161–182. https://doi.org/10.1111/imr.12481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders RW, Schiffner L, Master et al (2000) Variable-loop-deleted variants of the human immunodeficiency virus type 1 envelope glycoprotein can be stabilized by an intermolecular disulfide bond between the gp120 and gp41 subunits. J Virol 74:5091–100

    Google Scholar 

  • Sandin S, Öfverstedt LG, Wikström et al (2004). Structure and flexibility of individual immunoglobulin G molecules in solution. Structure 12: 409–415

    Google Scholar 

  • Saphire EO, Parren PW, Pantophlet R et al (2001) Crystal structure of a neutralizing human IgG against HIV-1: template for vaccine design. Science 293:1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Scapin G, Yang X, Prosise WW et al (2015) Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat Struct Mol Biol 22:953–958

    Article  CAS  PubMed  Google Scholar 

  • Scherf A, Lopez-Rubio JJ, Riviere L (2008) Antigenic variation in Plasmodium falciparum. Annu Rev Microbiol 62:445–470

    Article  CAS  PubMed  Google Scholar 

  • Schlosstein L, Terasaki PI, Bluestone R et al (1973) High association of an HL-A antigen, W27, with ankylosing spondylitis. N Engl J Med 288:704–706

    Article  CAS  PubMed  Google Scholar 

  • Schroeder HW Jr, Cavacini L (2010) Structure and function of immunoglobulins. J Allergy Clin Immunol. 125:41–52. https://doi.org/10.1016/j.jaci.2009.09.046

    Article  Google Scholar 

  • Sharma SK, de Val N, Bale S et al (2015) Cleavage-independent HIV-1 Env trimers engineered as soluble native spike mimetics for vaccine design. Cell Rep. 11:539–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DB, Bukh J, Kuiken C et al (2014) Expanded classification of hepatitis C virus into 7 genotypes and 67 subtypes: updated criteria and genotype assignment web resource. Hepatology 59:318–327

    Article  PubMed  Google Scholar 

  • Su XZ, Heatwole VM, Wertheimer SP et al (1995) The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82:89–100

    Article  CAS  PubMed  Google Scholar 

  • Sun Z, Almogren A, Furtado PB et al (2005) Semi-extended solution structure of human myeloma immunoglobulin D determined by constrained X-ray scattering. J Mol Biol 353:155–173

    Article  CAS  PubMed  Google Scholar 

  • Tan J, Piccoli L, Lanzavecchia A (2018) The Antibody Response to Plasmodium falciparum: cues for vaccine design and the discovery of receptor-based antibodies. Annu Rev Immunol. https://doi.org/10.1146/annurev-immunol-042617-053301

  • Tan J, Pieper K, Piccoli L et al (2016) A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens. Nature 529:105–109

    Article  CAS  PubMed  Google Scholar 

  • Tan K, Liu J, Wang J et al (1997) Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci U S A. 94:12303–12308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tran EE, Borgnia MJ, Kuybeda O et al (2012) Structural mechanism of trimeric HIV-1 envelope glycoprotein activation. PLoS Pathog 8:e1002797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vilhena JG, Dumitru AC, Herruzo ET et al (2016) Adsorption orientations and immunological recognition of antibodies on graphene. Nanoscale 8:13463–13475

    Article  CAS  PubMed  Google Scholar 

  • Vollmers HP, Brandlein S (2006) Natural IgM antibodies: the orphaned molecules in immune surveillance. Adv Drug Deliv Rev 58:755–765

    Article  CAS  PubMed  Google Scholar 

  • Wahlgren M, Goel S, Akhouri RR (2017) Variant surface antigens of Plasmodium falciparum and their roles in severe malaria. Nat Rev Microbiolgy. 15-479-491

    Google Scholar 

  • Wec AZ, Bornholdt ZA, He S, Herbert AS et al (2019) Development of a human antibody cocktail that deploys multiple functions to confer pan-ebolavirus protection. Cell Host Microbe 25(39–48):e5. https://doi.org/10.1016/j.chom.2018.12.004

    Article  CAS  Google Scholar 

  • Weissenhorn W, Dessen A, Harrison SC et al (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430

    Article  CAS  PubMed  Google Scholar 

  • WHO Global Hepatitis Report (2017) https://apps.who.int/iris/rest/bitstreams/1082592/retrieve

  • Wilson JA, Hevey M, Bakken R et al (2000) Epitopes involved in antibody-mediated protection from Ebola virus. Science 287:1664–1666

    Article  CAS  PubMed  Google Scholar 

  • Wong-Baeza C, Reséndiz-Mora A, Donis-Maturano L et al (2016) Anti-lipid IgG antibodies are produced via Germinal Centers in a murine model resembling human lupus. Front Immunol 7:396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woof J, Burton D (2004) Human antibody-Fc receptor interactions illuminated by crystal structures. Nat Rev Immunol 4:89–99

    Article  CAS  PubMed  Google Scholar 

  • Zanetti G, Briggs JA, Grünewald K et al (2006) Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog 2:e83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeitlin L, Pettitt J, Scully C et al (2011) Enhanced potency of a fucose-free monoclonal antibody being developed as an Ebola virus immunoprotectant. Proc Natl Acad Sci U S A. 108:20690–20694

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu D, Li G et al (2017) Antibody mediated neutralization of soluble MIC significantly enhances CTLA4 blockade therapy. Sci Adv 3(5):e1602133. https://doi.org/10.1126/sciadv.1602133

  • Zhu P, Chertova E, Bess J Jr et al (2003) Electron tomography analysis of envelope glycoprotein trimers on HIV and simian immunodeficiency virus virions. Proc Natl Acad Sci U S A. 100:15812–15817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu P, Liu J, Bess J Jr et al (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441:847–852

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulf Skoglund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Akhouri, R.R., Öfverstedt, LG., Wilken, G., Skoglund, U. (2019). Antibody Complexes. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes II: Structure and Function . Subcellular Biochemistry, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-28151-9_2

Download citation

Publish with us

Policies and ethics