Skip to main content

CAD, A Multienzymatic Protein at the Head of de Novo Pyrimidine Biosynthesis

  • Chapter
  • First Online:
Macromolecular Protein Complexes II: Structure and Function

Abstract

CAD is a 1.5 MDa particle formed by hexameric association of a 250 kDa protein that carries the enzymatic activities for the first three steps in the de novo biosynthesis of pyrimidine nucleotides: glutamine-dependent Carbamoyl phosphate synthetase, Aspartate transcarbamoylase and Dihydroorotase. This metabolic pathway is essential for cell growth and proliferation and is conserved in all living organisms. However, the fusion of the first three enzymatic activities of the pathway into a single multienzymatic protein only occurs in animals. In prokaryotes, by contrast, these activities are encoded as distinct monofunctional enzymes that function independently or by forming more or less transient complexes. Whereas the structural information about these enzymes in bacteria is abundant, the large size and instability of CAD has only allowed a fragmented characterization of its structure. Here we retrace some of the most significant efforts to decipher the architecture of CAD and to understand its catalytic and regulatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    There is yet a CPS-3 in some invertebrates and fish that combines properties of CPS-1 and CPS-2 [Anderson PM (1989) Biochem J 261(2): 523–529]. It consists of a single polypeptide with GLN and SYN domains, requires acetylglutamate as co-factor, is not regulated by nucleotides and hydrolyzes glutamine.

References

  • Allewell NM (1989) Escherichia coli aspartate transcarbamoylase: structure, energetics, and catalytic and regulatory mechanisms. Annu Rev Biophys Biophys Chem 18:71–92

    Article  CAS  PubMed  Google Scholar 

  • Anderson PM (1986) Carbamoyl-phosphate synthetase: an example of effects on enzyme properties of shifting an equilibrium between active monomer and active oligomer. Biochemistry 25(19):5576–5582

    Article  CAS  PubMed  Google Scholar 

  • Anderson PM, Meister A (1965) Evidence for an activated form of carbon dioxide in the reaction catalyzed by Escherichia coli carbamyl phosphate synthetase. Biochemistry 4(12):2803–2809

    Article  CAS  PubMed  Google Scholar 

  • Anderson PM, Meister A (1966) Bicarbonate-dependent cleavage of adenosine triphosphate and other reactions catalyzed by Escherichia coli carbamyl phosphate synthetase. Biochemistry 5(10):3157–3163

    Article  CAS  PubMed  Google Scholar 

  • Antonelli R, Estevez L, Denis-Duphil M (1998) Carbamyl-phosphate synthetase domain of the yeast multifunctional protein Ura2 is necessary for aspartate transcarbamylase inhibition by UTP. FEBS Lett 422(2):170–174

    Article  CAS  PubMed  Google Scholar 

  • Ben-Sahra I, Howell JJ, Asara JM et al (2013) Stimulation of de novo pyrimidine synthesis by growth signaling through mTOR and S6K1. Science 339(6125):1323–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braxton BL, Mullins LS, Raushel FM et al (1992) Quantifying the allosteric properties of Escherichia coli carbamyl phosphate synthetase: determination of thermodynamic linked-function parameters in an ordered kinetic mechanism. Biochemistry 31(8):2309–2316

    Article  CAS  PubMed  Google Scholar 

  • Braxton BL, Mullins LS, Raushel FM et al (1996) Allosteric effects of carbamoyl phosphate synthetase from Escherichia coli are entropy-driven. Biochemistry 35(36):11918–11924

    Article  CAS  PubMed  Google Scholar 

  • Britton HG, Rubio V, Grisolia S (1979) Mechanism of carbamoyl-phosphate synthetase. Properties of the two binding sites for ATP. Eur J Biochem 102(2):521–530

    Google Scholar 

  • Brown EG (1998) Pyrimdines, ring nitrogen and key biomolecules: the biochemistry of N-heterocycles. Springer

    Google Scholar 

  • Bueso J, Cervera J, Fresquet V et al (1999) Photoaffinity labeling with the activator IMP and site-directed mutagenesis of histidine 995 of carbamoyl phosphate synthetase from Escherichia coli demonstrate that the binding site for IMP overlaps with that for the inhibitor UMP. Biochemistry 38(13):3910–3917

    Article  CAS  PubMed  Google Scholar 

  • Carrey EA (1995a) Key enzymes in the biosynthesis of purines and pyrimidines: their regulation by allosteric effectors and by phosphorylation. Biochem Soc Trans 23(4):899–902

    Google Scholar 

  • Carrey EA (1995b) The shape of CAD J. N. Davidson Paths to pyrimidines - an international newsletter

    Google Scholar 

  • Carrey EA, Hardie DG (1988) Mapping of catalytic domains and phosphorylation sites in the multifunctional pyrimidine-biosynthetic protein CAD. Eur J Biochem 171(3):583–588

    Article  CAS  PubMed  Google Scholar 

  • Carrey EA, Campbell DG, Hardie DG (1985) Phosphorylation and activation of hamster carbamyl phosphate synthetase II by cAMP-dependent protein kinase. A novel mechanism for regulation of pyrimidine nucleotide biosynthesis. EMBO J 4(13B):3735–3742

    Google Scholar 

  • Cervera J, Conejero-Lara F, Ruiz-Sanz J et al (1993) The influence of effectors and subunit interactions on Escherichia coli carbamoyl-phosphate synthetase studied by differential scanning calorimetry. J Biol Chem 268(17):12504–12511

    CAS  PubMed  Google Scholar 

  • Cervera J, Bendala E, Britton HG et al (1996) Photoaffinity labeling with UMP of lysine 992 of carbamyl phosphate synthetase from Escherichia coli allows identification of the binding site for the pyrimidine inhibitor. Biochemistry 35(22):7247–7255

    Article  CAS  PubMed  Google Scholar 

  • Chaparian MG, Evans DR (1991) The catalytic mechanism of the amidotransferase domain of the Syrian hamster multifunctional protein CAD. Evidence for a CAD-glutamyl covalent intermediate in the formation of carbamyl phosphate. J Biol Chem 266(6):3387–3395

    Google Scholar 

  • Christopherson RI, Jones ME (1980) The overall synthesis of L-5,6-dihydroorotate by multienzymatic protein pyr1-3 from hamster cells. Kinetic studies, substrate channeling, and the effects of inhibitors. J Biol Chem 255(23):11381–11395

    Google Scholar 

  • Coleman PF, Suttle DP, Stark GR (1977) Purification from hamster cells of the multifunctional protein that initiates de novo synthesis of pyrimidine nucleotides. J Biol Chem 252(18):6379–6385

    CAS  PubMed  Google Scholar 

  • Collins KD, Stark GR (1969) Aspartate transcarbamylase. Studies of the catalytic subunit by ultraviolet difference spectroscopy. J Biol Chem 244(7):1869–1877

    Google Scholar 

  • Collins KD, Stark GR (1971) Aspartate transcarbamylase interaction with the transition state analogue N-(phosphonacetyl)-L-aspartate. J Biol Chem 246(21):6599–6605

    CAS  PubMed  Google Scholar 

  • Czerwinski RM, Mareya SM, Raushel FM (1995) Regulatory changes in the control of carbamoyl phosphate synthetase induced by truncation and mutagenesis of the allosteric binding domain. Biochemistry 34(42):13920–13927

    Article  CAS  PubMed  Google Scholar 

  • Davidson JN, Patterson D (1979) Alteration in structure of multifunctional protein from Chinese hamster ovary cells defective in pyrimidine biosynthesis. Proc Natl Acad Sci U S A 76(4):1731–1735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davidson JN, Rumsby PC, Tamaren J (1981) Organization of a multifunctional protein in pyrimidine biosynthesis. Analyses of active, tryptic fragments. J Biol Chem 256(10):5220–5225

    Google Scholar 

  • Davidson JN, Rao GN, Niswander L et al (1990) Organization and nucleotide sequence of the 3′ end of the human CAD gene. DNA Cell Biol 9(9):667–676

    Article  CAS  PubMed  Google Scholar 

  • Davidson JN, Chen KC, Jamison RS et al (1993) The evolutionary history of the first three enzymes in pyrimidine biosynthesis. BioEssays 15(3):157–164

    Article  CAS  PubMed  Google Scholar 

  • Davis RH (1972) Metabolite distribution in cells. Science 178(4063):835–840

    Article  CAS  PubMed  Google Scholar 

  • de Cima S, Polo LM, Diez-Fernandez C et al (2015) Structure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis. Sci Rep 5:16950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Cano-Ochoa F, Grande-Garcia A, Reverte-Lopez M et al (2018) Characterization of the catalytic flexible loop in the dihydroorotase domain of the human multi-enzymatic protein CAD. J Biol Chem 293(49):18903–18913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denis-Duphil M (1989) Pyrimidine biosynthesis in Saccharomyces cerevisiae: the ura2 cluster gene, its multifunctional enzyme product, and other structural or regulatory genes involved in de novo UMP synthesis. Biochem Cell Biol 67(9):612–631

    Article  CAS  PubMed  Google Scholar 

  • Denis-Duphil M, Lecaer JP, Hardie DG et al (1990) Yeast carbamoyl-phosphate-synthetase–aspartate-transcarbamylase multidomain protein is phosphorylated in vitro by cAMP-dependent protein kinase. Eur J Biochem 193(2):581–587

    Article  CAS  PubMed  Google Scholar 

  • Diez-Fernandez C, Martinez AI, Pekkala S et al (2013) Molecular characterization of carbamoyl-phosphate synthetase (CPS1) deficiency using human recombinant CPS1 as a key tool. Hum Mutat 34(8):1149–1159

    Article  CAS  PubMed  Google Scholar 

  • Eroglu B, Powers-Lee SG (2002) Unmasking a functional allosteric domain in an allosterically nonresponsive carbamoyl-phosphate synthetase. J Biol Chem 277(47):45466–45472

    Article  CAS  PubMed  Google Scholar 

  • Evans DR (1986) CAD, a chimeric protein that initiates de novo pyrimidine biosynthesis in higher eukaryotes. In: Coggings JR, Hardie DG (eds) Multidomain proteins—structure and evolution. Elsevier

    Google Scholar 

  • Evans DR, Guy HI (2004) Mammalian pyrimidine biosynthesis: fresh insights into an ancient pathway. J Biol Chem 279(32):33035–33038

    Article  CAS  PubMed  Google Scholar 

  • Faure M, Camonis JH, Jacquet M (1989) Molecular characterization of a Dictyostelium discoideum gene encoding a multifunctional enzyme of the pyrimidine pathway. Eur J Biochem 179(2):345–358

    Article  CAS  PubMed  Google Scholar 

  • Fawaz MV, Topper ME, Firestine SM (2011) The ATP-grasp enzymes. Bioorg Chem 39(5–6):185–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fields C, Brichta D, Shepherdson M et al (1999) Phylogenetic analysis and classification of dihydroorotases: a complex history for a complex enzyme. Paths Pyrimidines 7:49–63

    Google Scholar 

  • Franks DM, Izumikawa T, Kitagawa H et al (2006) C. elegans pharyngeal morphogenesis requires both de novo synthesis of pyrimidines and synthesis of heparan sulfate proteoglycans. Dev Biol 296(2):409–420

    Google Scholar 

  • Freund JN, Jarry BP (1987) The rudimentary gene of Drosophila melanogaster encodes four enzymic functions. J Mol Biol 193(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Gaertner FH (1978) Unique catalytic properties of enzyme clusters. Trends Biochem Sci 3:63–65

    Article  CAS  Google Scholar 

  • Gerhart JC, Holoubek H (1967) The purification of aspartate transcarbamylase of Escherichia coli and separation of its protein subunits. J Biol Chem 242(12):2886–2892

    CAS  PubMed  Google Scholar 

  • Gouaux JE, Krause KL, Lipscomb WN (1987) The catalytic mechanism of Escherichia coli aspartate carbamoyltransferase: a molecular modelling study. Biochem Biophys Res Commun 142(3):893–897

    Article  CAS  PubMed  Google Scholar 

  • Grande-Garcia A, Lallous N, Diaz-Tejada C et al (2014) Structure, functional characterization, and evolution of the dihydroorotase domain of human CAD. Structure 22(2):185–198

    Article  CAS  PubMed  Google Scholar 

  • Graves LM, Guy HI, Kozlowski P et al (2000) Regulation of carbamoyl phosphate synthetase by MAP kinase. Nature 403(6767):328–332

    Article  CAS  PubMed  Google Scholar 

  • Guy HI, Evans DR (1994) Cloning, expression, and functional interactions of the amidotransferase domain of mammalian CAD carbamyl phosphate synthetase. J Biol Chem 269(10):7702–7708

    CAS  PubMed  Google Scholar 

  • Hemmens B, Carrey EA (1994) Proteolytic cleavage of the multienzyme polypeptide CAD to release the mammalian aspartate transcarbamoylase. Biochemical comparison with the homologous Escherichia coli catalytic subunit. Eur J Biochem 225(3):845–853

    Google Scholar 

  • Hewagama A, Guy HI, Vickrey JF et al (1999) Functional linkage between the glutaminase and synthetase domains of carbamoyl-phosphate synthetase. Role of serine 44 in carbamoyl-phosphate synthetase-aspartate carbamoyltransferase-dihydroorotase (cad). J Biol Chem 274(40):28240–28245

    Google Scholar 

  • Holden HM, Thoden JB, Raushel FM (1998) Carbamoyl phosphate synthetase: a tunnel runs through it. Curr Opin Struct Biol 8(6):679–685

    Article  CAS  PubMed  Google Scholar 

  • Holm L, Sander C (1997) An evolutionary treasure: unification of a broad set of amidohydrolases related to urease. Proteins 28(1):72–82

    Article  CAS  PubMed  Google Scholar 

  • Hoogenraad NJ, Levine RL, Kretchmer N (1971) Copurification of carbamoyl phosphate synthetase and aspartate transcarbamoylase from mouse spleen. Biochem Biophys Res Commun 44(4):981–988

    Article  CAS  PubMed  Google Scholar 

  • Huang YH, Huang CY (2015) Creation of a putative third metal binding site in type II dihydroorotases significantly enhances enzyme activity. Protein Pept Lett 22(12):1117–1122

    Article  CAS  PubMed  Google Scholar 

  • Imaeda M, Sumi S, Imaeda H et al (1998) Hereditary orotic aciduria heterozygotes accompanied with neurological symptoms. Tohoku J Exp Med 185(1):67–70

    Article  CAS  PubMed  Google Scholar 

  • Irvine HS, Shaw SM, Paton A et al (1997) A reciprocal allosteric mechanism for efficient transfer of labile intermediates between active sites in CAD, the mammalian pyrimidine-biosynthetic multienzyme polypeptide. Eur J Biochem 247(3):1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Jacobson GR, Stark GR (1973) Aspartate transcarbamylases. In: Boyer PD (ed) The enzymes. Academic Press (Elsevier)

    Google Scholar 

  • Jones ME (1971) Regulation of pyrimidine and arginine biosynthesis in mammals. Adv Enzyme Regul 9:19–49

    Article  Google Scholar 

  • Jones ME (1980) Pyrimidine nucleotide biosynthesis in animals: genes, enzymes, and regulation of UMP biosynthesis. Annu Rev Biochem 49(1):253–279

    Article  CAS  PubMed  Google Scholar 

  • Kelly RE, Mally MI, Evans DR (1986) The dihydroorotase domain of the multifunctional protein CAD. Subunit structure, zinc content, and kinetics. J Biol Chem 261(13):6073–6083

    Google Scholar 

  • Kempe TD, Swyryd EA, Bruist M et al (1976) Stable mutants of mammalian cells that overproduce the first three enzymes of pyrimidine nucleotide biosynthesis. Cell 9(4 Pt 1):541–550

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Kelly RE, Evans DR (1992) The structural organization of the hamster multifunctional protein CAD. Controlled proteolysis, domains, and linkers. J Biol Chem 267(10):7177–7184

    Google Scholar 

  • Koch J, Mayr JA, Alhaddad B et al (2017) CAD mutations and uridine-responsive epileptic encephalopathy. Brain 140(Pt 2):279–286

    Article  PubMed  Google Scholar 

  • Lacroute F, Pierard A, Grenson M et al (1965) The biosynthesis of carbamoyl phosphate in Saccharomyces cerevisiae. J Gen Microbiol 40(1):127–142

    Article  CAS  PubMed  Google Scholar 

  • Lallous N, Grande-Garcia A, Molina R et al (2012) Expression, purification, crystallization and preliminary X-ray diffraction analysis of the dihydroorotase domain of human CAD. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 68(Pt 11):1341–1345

    Article  CAS  Google Scholar 

  • Lee L, Kelly RE, Pastra-Landis SC et al (1985) Oligomeric structure of the multifunctional protein CAD that initiates pyrimidine biosynthesis in mammalian cells. Proc Natl Acad Sci U S A 82(20):6802–6806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee M, Chan CW, Mitchell Guss J et al (2005) Dihydroorotase from Escherichia coli: loop movement and cooperativity between subunits. J Mol Biol 348(3):523–533

    Article  CAS  PubMed  Google Scholar 

  • LiCata VJ, Allewell NM (1997) Is substrate inhibition a consequence of allostery in aspartate transcarbamylase? Biophys Chem 64(1–3):225–234

    Article  CAS  PubMed  Google Scholar 

  • Lipscomb WN (1994) Aspartate transcarbamylase from Escherichia coli: activity and regulation. Adv Enzymol Relat Areas Mol Biol 68:67–151

    CAS  PubMed  Google Scholar 

  • Lipscomb WN, Kantrowitz ER (2011) Structure and mechanisms of Escherichia coli aspartate transcarbamoylase. Acc Chem Res 45(3):444–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Guy HI, Evans DR (1994) Identification of the regulatory domain of the mammalian multifunctional protein CAD by the construction of an Escherichia coli hamster hybrid carbamyl-phosphate synthetase. J Biol Chem 269(44):27747–27755

    CAS  PubMed  Google Scholar 

  • Loffler M, Carrey EA, Zameitat E (2015) Orotic acid, more than just an intermediate of pyrimidine de novo synthesis. J Genet Genomics 42(5):207–219

    Article  CAS  PubMed  Google Scholar 

  • Lue PF, Kaplan JG (1969) The aspartate transcarbamylase and carbamoyl phosphate synthetase of yeast: a multi-functional enzyme complex. Biochem Biophys Res Commun 34(4):426–433

    Article  CAS  PubMed  Google Scholar 

  • Lusty CJ (1981) Catalytically active monomer and dimer forms of rat liver carbamoyl-phosphate synthetase. Biochemistry 20(13):3665–3674

    Article  CAS  PubMed  Google Scholar 

  • Makoff AJ, Buxton FP, Radford A (1978) A possible model for the structure of the Neurospora carbamoyl phosphate synthase-aspartate carbamoyl transferase complex enzyme. Mol Gen Genet 161(3):297–304

    Article  CAS  PubMed  Google Scholar 

  • Mally MI, Grayson DR, Evans DR (1980) Catalytic synergy in the multifunctional protein that initiates pyrimidine biosynthesis in Syrian hamster cells. J Biol Chem 255(23):11372–11380

    CAS  PubMed  Google Scholar 

  • Mally MI, Grayson DR, Evans DR (1981) Controlled proteolysis of the multifunctional protein that initiates pyrimidine biosynthesis in mammalian cells: evidence for discrete structural domains. Proc Natl Acad Sci U S A 78(11):6647–6651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meister A (1989) Mechanism and regulation of the glutamine-dependent carbamyl phosphate synthetase of Escherichia coli. Adv Enzymol Relat Areas Mol Biol 62:315–374

    CAS  PubMed  Google Scholar 

  • Miles BW, Raushel FM (2000) Synchronization of the three reaction centers within carbamoyl phosphate synthetase. Biochemistry 39(17):5051–5056

    Article  CAS  PubMed  Google Scholar 

  • Miles BW, Banzon JA, Raushel FM (1998) Regulatory control of the amidotransferase domain of carbamoyl phosphate synthetase. Biochemistry 37(47):16773–16779

    Article  CAS  PubMed  Google Scholar 

  • Miran SG, Chang SH, Raushel FM (1991) Role of the four conserved histidine residues in the amidotransferase domain of carbamoyl phosphate synthetase. Biochemistry 30(32):7901–7907

    Article  CAS  PubMed  Google Scholar 

  • Mora P, Rubio V, Fresquet V et al (1999) Localization of the site for the nucleotide effectors of Escherichia coli carbamoyl phosphate synthetase using site-directed mutagenesis. FEBS Lett 446(1):133–136

    Article  CAS  PubMed  Google Scholar 

  • Moreno-Morcillo M, Ramon-Maiques S (2017) CAD: a multifunctionl protein leading de novo pyrimidine biosynthesis. In: Encyclopedia of life sciences. John Wiley and Sons

    Google Scholar 

  • Moreno-Morcillo M, Grande-Garcia A, Ruiz-Ramos A et al (2017) Structural Insight into the Core of CAD, the multifunctional protein leading de novo pyrimidine biosynthesis. Structure 25(6):912–923 e915

    Google Scholar 

  • Mori M, Tatibana M (1978) A multienzyme complex of carbamoyl-phosphate synthase (glutamine): aspartate carbamoyltransferase: dihydoorotase (rat ascites hepatoma cells and rat liver). Methods Enzymol 51:111–120

    Article  CAS  PubMed  Google Scholar 

  • Newell JO, Markby DW, Schachman HK (1989) Cooperative binding of the bisubstrate analog N-(phosphonacetyl)-L-aspartate to aspartate transcarbamoylase and the heterotropic effects of ATP and CTP. J Biol Chem 264(5):2476–2481

    CAS  PubMed  Google Scholar 

  • Ng SB, Buckingham KJ, Lee C et al (2010) Exome sequencing identifies the cause of a mendelian disorder. Nat Genet 42(1):30–35

    Article  CAS  PubMed  Google Scholar 

  • Ng BG, Wolfe LA, Ichikawa M et al (2015) Biallelic mutations in CAD, impair de novo pyrimidine biosynthesis and decrease glycosylation precursors. Hum Mol Genet 24(11):3050–3057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norby S (1970) A specific nutritional requirement for pyrimidines in rudimentary mutants of Drosophila melanogaster. Hereditas 66(2):205–214

    Article  CAS  PubMed  Google Scholar 

  • Nyhan WL (2005) Nucleotide synthesis via salvage pathway. In: Encyclopedia of life sciences. John Wiley and Sons

    Google Scholar 

  • Nyunoya H, Lusty CJ (1983) The carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthetase. Proc Natl Acad Sci U S A 80(15):4629–4633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyunoya H, Lusty CJ (1984) Sequence of the small subunit of yeast carbamyl phosphate synthetase and identification of its catalytic domain. J Biol Chem 259(15):9790–9798

    CAS  PubMed  Google Scholar 

  • Nyunoya H, Broglie KE, Widgren EE et al (1985) Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat. J Biol Chem 260(16):9346–9356

    CAS  PubMed  Google Scholar 

  • Otsuki T, Mori M, Tatibana M (1982) Studies on channeling of carbamoyl-phosphate in the multienzyme complex that initiates pyrimidine biosynthesis in rat ascites hepatoma cells. J Biochem 92(5):1431–1437

    Article  CAS  PubMed  Google Scholar 

  • Penverne B, Belkaid M, Herve G (1994) In situ behavior of the pyrimidine pathway enzymes in Saccharomyces cerevisiae. 4. The channeling of carbamylphosphate to aspartate transcarbamylase and its partition in the pyrimidine and arginine pathways. Arch Biochem Biophys 309(1):85–93

    Google Scholar 

  • Pierson DL, Brien JM (1980) Human carbamylphosphate synthetase I. Stabilization, purification, and partial characterization of the enzyme from human liver. J Biol Chem 255(16):7891–7895

    Google Scholar 

  • Porter RW, Modebe MO, Stark GR (1969) Aspartate transcarbamylase. Kinetic studies of the catalytic subunit. J Biol Chem 244(7):1846–1859

    Google Scholar 

  • Porter TN, Li Y, Raushel FM (2004) Mechanism of the dihydroorotase reaction. Biochemistry 43(51):16285–16292

    Article  CAS  PubMed  Google Scholar 

  • Powers-Lee SG, Corina K (1986) Domain structure of rat liver carbamoyl phosphate synthetase I. J Biol Chem 261(33):15349–15352

    CAS  PubMed  Google Scholar 

  • Prange T, Girard E, Fourme R et al (2019) Pressure-induced activation of latent Dihydroorotase from Aquifex aeolicus as revealed by high pressure protein crystallography. FEBS J

    Google Scholar 

  • Qiu Y, Davidson JN (1998) Aspartate-90 and arginine-269 of hamster aspartate transcarbamylase affect the oligomeric state of a chimaeric protein with an Escherichia coli maltose-binding domain. Biochem J 329(Pt 2):243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Davidson JN (2000) Substitutions in the aspartate transcarbamoylase domain of hamster CAD disrupt oligomeric structure. Proc Natl Acad Sci 97(1):97–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raushel FM, Thoden JB, Reinhart GD et al (1998) Carbamoyl phosphate synthetase: a crooked path from substrates to products. Curr Opin Chem Biol 2(5):624–632

    Article  CAS  PubMed  Google Scholar 

  • Robitaille AM, Christen S, Shimobayashi M et al (2013) Quantitative phosphoproteomics reveal mTORC1 activates de novo pyrimidine synthesis. Science 339(6125):1320–1323

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Aparicio LB, Guadalajara AM, Rubio V (1989) Physical location of the site for N-acetyl-L-glutamate, the allosteric activator of carbamoyl phosphate synthetase, in the 20-kilodalton COOH-terminal domain. Biochemistry 28(7):3070–3074

    Article  CAS  PubMed  Google Scholar 

  • Rubio V (1994) Structure-activity correlations in carbamoyl phosphate synthetases. In: Brändén CI, Schneider G (eds) Carbon dioxide fixation and reduction in biological and model systems. Proceedings of the royal swedish academy of sciences nobel symposium 1991. Oxford University Press

    Google Scholar 

  • Rubio V, Ramponi G, Grisolia S (1981) Carbamoyl phosphate synthetase I of human liver. Purification, some properties and immunological cross-reactivity with the rat liver enzyme. Biochim Biophys Acta 659(1):150–160

    Google Scholar 

  • Rubio V, Britton HG, Grisolia S (1983) Mitochondrial carbamoyl phosphate synthetase activity in the absence of N-acetyl-L-glutamate. Mechanism of activation by this cofactor. Eur J Biochem 134(2):337–343

    Google Scholar 

  • Rubio V, Cervera J, Lusty CJ et al (1991) Domain structure of the large subunit of Escherichia coli carbamoyl phosphate synthetase. Location of the binding site for the allosteric inhibitor UMP in the COOH-terminal domain. Biochemistry 30(4):1068–1075

    Google Scholar 

  • Ruiz-Ramos A, Lallous N, Grande-Garcia A et al (2013) Expression, purification, crystallization and preliminary X-ray diffraction analysis of the aspartate transcarbamoylase domain of human CAD. Acta Crystallogr, Sect F: Struct Biol Cryst Commun 69(Pt 12):1425–1430

    Article  CAS  Google Scholar 

  • Ruiz-Ramos A, Velazquez-Campoy A, Grande-Garcia A et al (2016) Structure and functional characterization of human aspartate transcarbamoylase, the target of the anti-tumoral drug PALA. Structure 24(7):1081–1094

    Article  CAS  PubMed  Google Scholar 

  • Saeed-Kothe A, Powers-Lee SG (2003) Gain of glutaminase function in mutants of the ammonia-specific frog carbamoyl phosphate synthetase. J Biol Chem 278(29):26722–26726

    Article  CAS  PubMed  Google Scholar 

  • Schachman HK (1988) Can a simple model account for the allosteric transition of aspartate transcarbamoylase? J Biol Chem 263(35):18583–18586

    CAS  PubMed  Google Scholar 

  • Schurr MJ, Vickrey JF, Kumar AP et al (1995) Aspartate transcarbamoylase genes of Pseudomonas putida: requirement for an inactive dihydroorotase for assembly into the dodecameric holoenzyme. J Bacteriol 177(7):1751–1759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scully JL, Evans DR (1991) Comparative modeling of mammalian aspartate transcarbamylase. Proteins 9(3):191–206

    Article  CAS  PubMed  Google Scholar 

  • Shi D, Caldovic L, Tuchman M (2018) Sources and fates of carbamyl phosphate: a labile energy-rich molecule with multiple facets. Biology (Basel) 7(2)

    Google Scholar 

  • Shigesada K, Stark GR, Maley JA et al (1985) Construction of a cDNA to the hamster CAD gene and its application toward defining the domain for aspartate transcarbamylase. Mol Cell Biol 5(7):1735–1742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoaf WT, Jones ME (1971) Initial steps in pyrimidine synthesis in Ehrlich ascites carcinoma. Biochem Biophys Res Commun 45(3):796–802

    Article  CAS  PubMed  Google Scholar 

  • Simmer JP, Kelly RE, Rinker AG Jr et al (1990) Mammalian carbamyl phosphate synthetase (CPS). DNA sequence and evolution of the CPS domain of the Syrian hamster multifunctional protein CAD. J Biol Chem 265(18):10395–10402

    Google Scholar 

  • Souciet JL, Nagy M, Le Gouar M et al (1989) Organization of the yeast URA2 gene: identification of a defective dihydroorotase-like domain in the multifunctional carbamoylphosphate synthetase-aspartate transcarbamylase complex. Gene 79(1):59–70

    Article  CAS  PubMed  Google Scholar 

  • Stark GR (1977) Multifunctional proteins: one gene—more than one enzyme. Trends Biochem Sci 2:64–66

    Article  CAS  Google Scholar 

  • Stevens RC, Reinisch KM, Lipscomb WN (1991) Molecular structure of Bacillus subtilis aspartate transcarbamoylase at 3.0 A resolution. Proc Natl Acad Sci U S A 88(14):6087–6091

    Google Scholar 

  • Swyryd EA, Seaver SS, Stark GR (1974) N-(phosphonacetyl)-L-aspartate, a potent transition state analog inhibitor of aspartate transcarbamylase, blocks proliferation of mammalian cells in culture. J Biol Chem 249(21):6945–6950

    CAS  PubMed  Google Scholar 

  • Thoden JB, Holden HM, Wesenberg G et al (1997) Structure of carbamoyl phosphate synthetase: a journey of 96 A from substrate to product. Biochemistry 36(21):6305–6316

    Article  CAS  PubMed  Google Scholar 

  • Thoden JB, Miran SG, Phillips JC et al (1998) Carbamoyl phosphate synthetase: caught in the act of glutamine hydrolysis. Biochemistry 37(25):8825–8831

    Article  CAS  PubMed  Google Scholar 

  • Thoden JB, Huang X, Raushel FM et al (1999a) The small subunit of carbamoyl phosphate synthetase: snapshots along the reaction pathway. Biochemistry 38(49):16158–16166

    Google Scholar 

  • Thoden JB, Raushel FM, Benning MM et al (1999b) The structure of carbamoyl phosphate synthetase determined to 2.1 A resolution. Acta Crystallogr D Biol Crystallogr 55(Pt 1):8–24

    Google Scholar 

  • Thoden JB, Raushel FM, Wesenberg G et al (1999c) The binding of inosine monophosphate to Escherichia coli carbamoyl phosphate synthetase. J Biol Chem 274(32):22502–22507

    Google Scholar 

  • Thoden JB, Wesenberg G, Raushel FM et al (1999d) Carbamoyl phosphate synthetase: closure of the B-domain as a result of nucleotide binding. Biochemistry 38(8):2347–2357

    Google Scholar 

  • Thoden JB, Phillips GN Jr, Neal TM et al (2001) Molecular structure of dihydroorotase: a paradigm for catalysis through the use of a binuclear metal center. Biochemistry 40(24):6989–6997

    Article  CAS  PubMed  Google Scholar 

  • Thoden JB, Huang X, Raushel FM et al (2002) Carbamoyl-phosphate synthetase. Creation of an escape route for ammonia. J Biol Chem 277(42):39722–39727

    Google Scholar 

  • Thoden JB, Huang X, Kim J et al (2004) Long-range allosteric transitions in carbamoyl phosphate synthetase. Protein Sci 13(9):2398–2405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Traut TW, Jones ME (1979) Interconversion of different molecular weight forms of the orotate phosphoribosyltransferase.orotidine-5′-phosphate decarboxylase enzyme complex from mouse Ehrlich ascites cells. J Biol Chem 254(4):1143–1150

    Google Scholar 

  • Wellner VP, Anderson PM, Meister A (1973) Interaction of Escherichia coli carbamyl phosphate synthetase with glutamine. Biochemistry 12(11):2061–2066

    Article  CAS  PubMed  Google Scholar 

  • Willer GB, Lee VM, Gregg RG et al (2005) Analysis of the Zebrafish perplexed mutation reveals tissue-specific roles for de novo pyrimidine synthesis during development. Genetics 170(4):1827–1837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams LG, Davis RH (1970) Pyrimidine-specific carbamyl phosphate synthetase in Neurospora crassa. J Bacteriol 103(2):335–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Williams LG, Bernhardt S, Davis RH (1970) Copurification of pyrimidine-specific carbamyl phosphate synthetase and aspartate transcarbamylase of Neurospora crassa. Biochemistry 9(22):4329–4335

    Article  CAS  PubMed  Google Scholar 

  • Yoshida T, Stark GR, Hoogenraad J (1974) Inhibition by N-(phosphonacetyl)-L-aspartate of aspartate transcarbamylase activity and drug-induced cell proliferation in mice. J Biol Chem 249(21):6951–6955

    CAS  PubMed  Google Scholar 

  • Zhang P, Martin PD, Purcarea C et al (2009) Dihydroorotase from the hyperthermophile Aquifex aeolicus is activated by stoichiometric association with aspartate transcarbamoylase and forms a one-pot reactor for pyrimidine biosynthesis. Biochemistry 48(4):766–778

    Article  CAS  PubMed  Google Scholar 

  • Zrenner R, Stitt M, Sonnewald U et al (2006) Pyrimidine and purine biosynthesis and degradation in plants. Annu Rev Plant Biol 57:805–836

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Ramón-Maiques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

del Caño-Ochoa, F., Moreno-Morcillo, M., Ramón-Maiques, S. (2019). CAD, A Multienzymatic Protein at the Head of de Novo Pyrimidine Biosynthesis. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes II: Structure and Function . Subcellular Biochemistry, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-28151-9_17

Download citation

Publish with us

Policies and ethics