Skip to main content

Crystallins and Their Complexes

  • Chapter
  • First Online:
Macromolecular Protein Complexes II: Structure and Function

Part of the book series: Subcellular Biochemistry ((SCBI,volume 93))

Abstract

The crystallins (α, β and γ), major constituent proteins of eye lens fiber cells play their critical role in maintaining the transparency and refractive index of the lens. Under different stress factors and with aging, β- and γ-crystallins start to unfold partially leading to their aggregation. Protein aggregation in lens basically enhances light scattering and causes the vision problem, commonly known as cataract. α-crystallin as a molecular chaperone forms complexes with its substrates (β- and γ-crystallins) to prevent such aggregation. In this chapter, the structural features of β- and γ-crystallins have been discussed. Detailed structural information linked with the high stability of γC-, γD- and γS-crystallins have been incorporated. The nature of homologous and heterologous interactions among crystallins has been deciphered, which are involved in their molecular association and complex formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta-Sampson L, King J (2010) Partially folded aggregation intermediates of human γD-, γC-, and γS-crystallin are recognized and bound by human αB-crystallin chaperone. J Mol Biol 401:134–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmad MF, Singh D, Taiyab A, Ramakrishna T, Raman B, Rao CM (2008) Selective Cu2+ binding, redox silencing, and cytoprotective effects of the small heat shock proteins αA and αB-crystallin. J Mol Biol 382:812–824

    Article  CAS  PubMed  Google Scholar 

  • Asomugha CO, Gupta R, Srivastava OP (2011) Structural and functional properties of NH2-terminal domain, core domain, and COOH-terminal extension of αA- and αB-crystallins. Mol Vis 17:2356–2367

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aziz A, Santhoshkumar P, Sharma KK, Abraham EC (2007) Cleavage of the C-terminal serine of human alphaA-crystallin produces alphaA1-172 with increased chaperone activity and oligomeric size. Biochemistry 46:2510–2519

    Article  CAS  PubMed  Google Scholar 

  • Bagby S, Go S, Inouye S, Ikura M, Chakrabartty A (1998) Equilibrium folding intermediates of a Greek key beta-barrel protein. J Mol Biol 276:669–681

    Article  CAS  PubMed  Google Scholar 

  • Bagnéris C, Bateman OA, Naylor CE, Cronin N, Boelens WC, Keep NH, Slingsby C (2009) Crystal structures of α-crystallin domain dimers of αB-crystallin and Hsp20. J Mol Bio 392:1242–1252

    Article  CAS  Google Scholar 

  • Bakthisaran R, Tangirala R, Rao CM (2015) Small heat shock proteins: role in cellular functions and pathology. Biochim Biophys Acta 1854:291–319

    Article  CAS  PubMed  Google Scholar 

  • Banerjee PR, Pande A, Patrosz J, Thurston GM, Pande J (2011) Cataract-associated mutant E107A of human γD-crystallin shows increased attraction to α-crystallin and enhanced light scattering. Proc Natl Acad Sci U S A 108:574–579

    Article  PubMed  Google Scholar 

  • Barnwal RP, Jobby MK, Devi KM, Sharma Y, Chary KVR (2009) Solution structure and calcium binding properties of M-crystallin, a primordial βγ-crystallin from archaea. J Mol Biol 386:675–689

    Article  CAS  PubMed  Google Scholar 

  • Basak AK, Bateman O, Slingsby C, Pande A, Asherie N, Ogun O, Benedek G, Pande J (2003) High-resolution X-ray crystal structures of human γD-crystallin (1.25A) and the R58H mutant (1.15A) associated with aculeiform cataract. J Mol Biol 328:1137–1147

    Article  CAS  PubMed  Google Scholar 

  • Basha E, O’Neill H, Vierling E (2012) Small heat shock proteins and α-crystallins: dynamic proteins with flexible functions. Trends Biochem Sci 37:106–117

    Article  CAS  PubMed  Google Scholar 

  • Bateman OA, Slingsby C (1992) Structural studies on βH-crystallin from bovine eye lens. Exp Eye Res 55:127–133

    Article  CAS  PubMed  Google Scholar 

  • Bateman OA, Sarra A, Van Genesan ST, Kappe G, Lubsen NH, Slingsby C (2003) The stability of human acidic beta-crystallin oligomers and hetero-oligomers. Exp Eye Res 77:409–422

    Article  CAS  PubMed  Google Scholar 

  • Bax B, Lapatto R, Nalini V, Driessen H, Lindley PF, Mahadevan D, Blundell TL, Slingsby C (1990) X-ray analysis of beta-B2-crystallin and evolution of oligomeric lens proteins. Nature 347:776–780

    Article  CAS  PubMed  Google Scholar 

  • Beaulieu CF, Clark JI, Brown RD III et al (1988) Relaxometry of calf lens homogenates, including cross-relaxation by crystallin NH groups. Magn Reson Med 8:45–57

    Article  CAS  PubMed  Google Scholar 

  • Benedek GB (1971) Theory of transparency of the eye. Appl Opt 10:459–473

    Article  CAS  PubMed  Google Scholar 

  • Bettelheim FA (1985) The ocular lens: structure, function, and pathology. In: Maisel H (ed) Marcel Dekker, Inc., New York, pp 265–300

    Google Scholar 

  • Bettelheim FA, Chen A (1998) Thermodynamic stability of bovine alpha-crystallin in its interactions with other bovine crystallins. Int J Biol Macromol 22:247–252

    Article  CAS  PubMed  Google Scholar 

  • Biswas A, Das KP (2004) Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function. J Biol Chem 279:42648–42657

    Article  CAS  PubMed  Google Scholar 

  • Biswas A, Das KP (2008) Zn2+ enhances the molecular chaperone function and stability of alpha-crystallin. Biochemistry 47:804–816

    Article  CAS  PubMed  Google Scholar 

  • Bloemendal H (1981) The lens proteins. In: Bloemendal H (ed) Molecular and cellular biology of the eye lens. Willey, New York, NY, pp 1–49

    Google Scholar 

  • Bloemendal H, de Jong WW (1991) Lens proteins and their genes. Prog Nucleic Acid Res Mol Biol 41:259–281

    Article  CAS  PubMed  Google Scholar 

  • Bloemendal H, de Jong W, Jaenicke R, Lubsen NH, Slingsby C, Tardieu A (2004) Ageing and vision: structure, stability and function of lens crystallins. Prog Biophy Mol Biol 86:407–485

    Article  CAS  Google Scholar 

  • Brakenhoff RH, Aarts HJ, Reek FH, Lubsen NH, Schoenmakers JG (1990) Human γ-crystallin genes: a gene family on its way to extinction. J Mol Biol 216:519–532

    Article  CAS  PubMed  Google Scholar 

  • Breitman ML, Lok S, Wistow G, Piatigorsky J, Treton JA, Gold RJ, Tsui LC (1984) Gamma-crystallin family of the mouse lens: structural and evolutionary relationships. Proc Natl Acad Sci U S A 81:7762–7766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carver JA (1999) Probing the structure and interactions of crystallin proteins by NMR spectroscopy. Prog Retin Eye Res 18:431–462

    Article  CAS  PubMed  Google Scholar 

  • Carver JA, Lindner RA (1998) NMR spectroscopy of α-crystallin, Insights into the structure, interactions and chaperone action of small heat-shock proteins. Int J Biol Macromol 22:197–209

    Article  CAS  PubMed  Google Scholar 

  • Carver JA, Aquilina JA, Truscott RJW, Ralston GB (1992) Identification by 1H NMR spectroscopy of flexible C-terminal extensions in bovine lens α-crystallin. FEBS Lett 311:143–149

    Article  CAS  PubMed  Google Scholar 

  • Carver JA, Aquilina JA, Cooper PG, Williams GA, Truscott RJ (1994) Alpha crystallin: molecular chaperone and protein surfactant. Biochim Biophys Acta 1205:195–206

    Article  Google Scholar 

  • Caspers GJ, Leunissen JA, de Jong WW (1995) The expanding small heat-shock protein family, and structure predictions of the conserved α-crystallin domain. J Mol Evol 40:238–248

    Article  CAS  PubMed  Google Scholar 

  • Chauhan P, Muralidharan SB, Velappan AB, Datta D, Pratihar S, Debnath J, Ghosh KS (2017a) Inhibition of copper-mediated aggregation of human γD-crsytallin by Schiff bases. J Biol Inorg Chem 22:505–517

    Article  CAS  PubMed  Google Scholar 

  • Chauhan P, Velappan AB, Sahoo BK, Debnath J, Ghosh KS (2017b) Studies on molecular interactions between Schiff bases and eye lens chaperone human αA-crystallin. J Lumin 192:148–155

    Article  CAS  Google Scholar 

  • Chaves JM, Srivastava K, Gupta R, Srivastava OP (2008) Structural and functional roles of deamidation and/or truncation of N- or C-termini in human alpha A-crystallin. Biochemistry 47:10069–10083

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Zhao H, Schuck P, Wistow G (2014) Solution properties of γ-crystallins: compact structure and low frictional ratio are conserved properties of diverse γ-crystallins. Protein Sci 23:76–87

    Article  CAS  PubMed  Google Scholar 

  • Chiou SH, Huang CH, Lee IL, Wang YT, Liu NY, Tsay YG, Chen YJ (2010) Identification of in vivo phosphorylation sites of lens proteins from porcine eye lenses by a gel-free phosphoproteomics approach. Mol Vis 16:294–302

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark AR, Naylor CE, Bagnéris C, Keep NH, Slingsby C (2011) Crystal structure of R120G disease mutant of human αB-crystallin domain dimer shows closure of a groove. J Mol Biol 408:118–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cooper PG, Aquilina JA, Truscott RJW, Carver JA (1994) Supramolecular order within the lenses: 1HNMR spectroscopic evidence for specific crystallin-crystallin interactions. Exp Eye Res 59:607–616

    Article  CAS  PubMed  Google Scholar 

  • Cvekl A, Duncan MK (2007) Genetic and epigenetic mechanisms of gene regulation during lens development. Prog Retin Eye Res 26:555–597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Alessio G (2002) The evolution of monomeric and oligomeric betagamma-type crystallins. Facts and hypotheses. Eur J Biochem 269:3122–3130

    Article  CAS  PubMed  Google Scholar 

  • Das P, King JA, Zhou R (2010) Beta-strand interactions at the domain interface critical for the stability of human lens gammaD-crystallin. Protein Sci 19:131–140

    Article  CAS  PubMed  Google Scholar 

  • de Jong WW, Leunissen JA, Voorter CE (1993) Evolution of the alpha-crystallin/small heat-shock protein family. Mol Biol Evol 10:103–126

    Google Scholar 

  • de Jong WW, Caspers GJ, Leunissen JA (1998) Genealogy of the α-crystallin-small heat shock protein superfamily. Int J Biol Macromol 22:151–162

    Article  PubMed  Google Scholar 

  • Delaye M, Tardieu A (1983) Short-range order of crystallin proteins accounts for eye lens transparency. Nature 302:415–417

    Article  CAS  PubMed  Google Scholar 

  • Delbecq SP, Klevit RE (2013) One size does not fit all: the oligomeric states of alpha-B crystallin. FEBS Lett 587:1073–1080

    Article  CAS  PubMed  Google Scholar 

  • Dixit K, Pande A, Pande J, Sarma SP (2016) Nuclear magnetic resonance structure of a major lens protein, human gamma γC-crystallin: role of the dipole moment in protein solubility. Biochemistry 55:3136–3149

    Article  CAS  PubMed  Google Scholar 

  • Farnsworth PN, Groth-Vasselli B, Greenfield NJ, Singh K (1997) Effects of temperature and concentration on bovine lens alpha-crystallin secondary structure: a circular dichroism spectroscopic study. Int J of Biol Macromol 20:283–291

    Article  CAS  Google Scholar 

  • Flaugh SL, Kosinski-Collins MS, King J (2005a) Interdomain side-chain interactions in human gammaD-crystallin influencing folding and stability. Protein Sci 14:2030–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flaugh SL, Kosinski-Collins MS, King JA (2005b) Contributions of hydrophobic domain interface interactions to the folding and stability of human gammaD-crystallin. Protein Sci 14:569–581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Liang JJ (2002) Unfolding of human lens recombinant betaB2 and gammaC-crystallins. J Struct Biol 139:191–198

    Article  CAS  PubMed  Google Scholar 

  • Fu L, Liang JJ (2003) Alteration of protein-protein interactions of congenital cataract crystallin mutants. Invest Ophthalmol Vis Sci 44:1155–1159

    Article  PubMed  Google Scholar 

  • Ganadu ML, Aru M, Mura GM, Coi A, Mlynarz P, Kozlowski H (2004) Effects of divalent metal ions on the alphaB-crystallin chaperone-like activity: spectroscopic evidence for a complex between copper (II) and protein. J Inorg Biochem 98:1103–1109

    Article  CAS  PubMed  Google Scholar 

  • Garrido C, Paul C, Seigneuric R, Kampinga HH (2012) The small heat shock proteins family: the long forgotten. Int J Biochem Cell Biol 44:1588–1592

    Article  CAS  PubMed  Google Scholar 

  • Ghosh JG, Shenoy AK, Clark JI (2006) N- and C-terminal motifs in human αB crystalline play an important role in the recognition, selection, and solubilization of subtrates. Biochemistry 45:13847–13854

    Article  CAS  PubMed  Google Scholar 

  • Ghosh KS, Pande A, Pande J (2011) Binding of γ-crystallin substrate prevents the binding of copper and zinc ions to the molecular chaperone α-crystallin. Biochemistry 50:3279–3281

    Article  CAS  PubMed  Google Scholar 

  • Graw J (2009) Genetics of crystallins: cataract and beyond. Exp Eye Res 88:173–178

    Article  CAS  PubMed  Google Scholar 

  • Graw J, Löster J, Soewarto D, Fuchs H, Reis A, Wolf E, Balling R, Angelis MH (2002) V76D mutation in a conserved γD-crystallin region leads to dominant cataracts in mice. Mamm Genome 13:452–455

    Article  CAS  PubMed  Google Scholar 

  • Graw J, Neuhäuser-Klaus A, Klopp N, Selby PB, Löster J, Favor J (2004) Genetic and allelic heterogeneity of Cryg mutations in eight distinct forms of dominant cataract in the mouse. Invest Ophthalmol Vis Sci 45:1202–1213

    Article  PubMed  Google Scholar 

  • Gupta R, Srivastava OP (2004a) Deamidation affects structural and functional properties of human alphaA-crystallin and its oligomerization with alphaB-crystallin. J Biol Chem 279:44258–44269

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Srivastava OP (2004b) Effect of deamidation of asparagine 146 on functional and structural properties of human lens alphaB-crystallin. Invest Ophthalmol Vis Sci 45:206–214

    Article  PubMed  Google Scholar 

  • Hains PG, Truscott RJW (2007) Post-translational modifications in the nuclear region of young, aged, and cataract human lenses. J Proteome Res 6:3935–3943

    Article  CAS  PubMed  Google Scholar 

  • Haley DA, Horwitz J, Stewart PL (1998) The small heat-shock protein, alpha B-crystallin, has a variable quaternary structure, J Mol. Biol. 277:27–35

    CAS  Google Scholar 

  • Haslbeck M, Franzmann T, Weinfurtner D, Buchner J (2005) Some like it hot: the structure and function of small heat-shock proteins. Nat Struct Mol Biol 12:842–846

    Article  CAS  PubMed  Google Scholar 

  • Hejtmancik JF, Wingfield PT, Chambers C, Russell P, Chen HC, Sergeev YV, Hope JN (1997) Association properties of beta B2- and beta A3-crystallin: ability to form dimmers. Protein Eng 10:1347–1352

    Article  CAS  PubMed  Google Scholar 

  • Hejtmancik JF, Wingfield PT, Sergeev YV (2004) Beta-crystallin association. Exp Eye Res 79:377–383

    Article  CAS  PubMed  Google Scholar 

  • Hochberg GK, Ecroyd H, Liu C, Cox D, Cascio D, Sawaya MR, Collier MP, Stroud J, Carver JA, Baldwin AJ, Robinson CV, Eisenberg DS, Benesch JL, Laganowsky A (2014) The structured core domain of αB-crystallin can prevent amyloid fibrillation and associated toxicity. Proc Natl Acad Sci U S A 111:1562–1570

    Google Scholar 

  • Horwitz J (1992) α-Crystallin can function as a molecular chaperone. Proc Natl Acad Sci U S A 89:10449–10453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horwitz J, Bova MP, Ding L, Haley DA, Stewart PL (1999) Lens α-crystallin: function and structure. Eye 13:403–408

    Article  PubMed  Google Scholar 

  • Jaenicke R, Slingsby C (2001) Lens crystallins and their microbial homologs: structure, stability, and function. Crit Rev Biochem Mol Biol 36:435–499

    Article  CAS  PubMed  Google Scholar 

  • Jehle S, van Rossum B, Stout JR, Noguchi SM, Falber K, Rehbein K, Oschkinat H, Klevit RE, Rajagopal P (2009) αB-crystallin: a hybrid solid-state/solution-state NMR investigation reveals structural aspects of the heterogeneous oligomer. J Mol Biol 385:1481–1497

    Article  CAS  PubMed  Google Scholar 

  • Jehle S, Rajagopal P, Bardiaux B, Markovic S, Kühne R, Stout JR, Higman VA, Klevit RE, van Rossum BJ, Oschkinat H (2010) Solid-state NMR and SAXS studies provide a structural basis for the activation of αB-crystallin oligomers. Nat Struct Mol Bio 1371:1037–1042

    Article  CAS  Google Scholar 

  • Jehle S, Vollmar BS, Bardiaux B, Dove KK, Rajagopal P, Gonen T, Oschkinat H, Klevit RE (2011) N-terminal domain of αB-crystallin provides a conformational switch for multimerization and structural heterogeneity. Proc Natl Acad Sci U S A 108:6409–6414

    Article  PubMed  PubMed Central  Google Scholar 

  • Ji F, Jung J, Koharudin LMI, Gronenborn AM (2013) The human W42R gamma D-crystallin mutant structure provides a link between congenital and age related cataracts. J Biolog Chem 288:99–109

    Article  CAS  Google Scholar 

  • Kappé G, Boelens WC, de Jong WW (2010) Why proteins without an α-crystallin domain should not be included in the human small heat shock protein family HSPB. Cell Stress Chaperones 15:457–461

    Article  CAS  PubMed  Google Scholar 

  • Kingsley CN, Brubaker WD, Markovic S, Diehl A, Brindley AJ, Oschkinat H, Martin RW (2013) Preferential and specific binding of human alpha B-crystallin to a cataract-related variant of gamma S-crystallin. Structure 21:2221–2227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klemenz R, Fröhli E, Steiger RH, Schäferand R, Aoyama A (1991) αB-crystallin is a small heat shock protein. Proc Natl Acad Sci U S A 88:3652–3656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig SH, Brown RD III, Spiller M et al (1992) Intermolecular protein interactions in solutions of calf lens-crystallin: results from 1/T1 nuclear magnetic relaxation dispersion profiles. Biophys J 61:776–785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong F, King J (2011) Contributions of aromatic pairs to the folding and stability of long-lived human γD-crystallin. Protein Sci 20:513–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosinski-Collins MS, King J (2003) In vitro unfolding, refolding, and polymerization of human gammaD crystallin, a protein involved in cataract formation. Protein Sci 12:480–490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosinski-Collins MS, Flaugh SL, King JA (2004) Probing folding and fluorescence quenching in human gammaD crystallin Greek key domains using triple tryptophan mutant proteins. Protein Sci 13:2223–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriehuber T, Rattei T, Weinmaier T, Bepperling A, Haslbeck M, Buchner J (2010) Independent evolution of the core domain and its flanking sequences in small heatshock proteins. FASEB J. 24:3633–3642

    Article  CAS  PubMed  Google Scholar 

  • Kundu M, Sen PC, Das KP (2007) Structure, stability, and chaperone function of αAcrystallin: role of N-terminal region. Biopolymers 86:177–192

    Article  CAS  PubMed  Google Scholar 

  • Laganowsky A, Eisenberg D (2010) Non-3D domain swapped crystal structure of truncated zebrafish alpha-crystallin. Protein Sci 19:1978–1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laganowsky A, Benesch JLP, Landau M, Ding L, Sawaya MR, Cascio D, Huang Q, Robinson C, Horwitz J, Eisenberg D (2010) Crystal structures of truncated alphaA and alphaB-crystallins reveal structural mechanisms of polydispersity important for eye lens function. Protein Sci 19:1031–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lampi KJ, Ma Z, Shih M, Shearer TR, Smith JB, Smith DL, David LL (1997) Sequence analysis of βA3, βB3, and βA4 crystallins completes the identification of the major proteins in young human lens. J Biol Chem 272:2268–2275

    Article  CAS  PubMed  Google Scholar 

  • Lampi KJ, Ma Z, Hanson SR, Azuma M, Shih M, Shearer TR, Smith DL, Smith JB, David LL (1998) Age-related changes in human lens crystallins identified by two dimensional electrophoresis and mass spectrometry. Exp Eye Res 67:31–43

    Article  CAS  PubMed  Google Scholar 

  • Lampi KJ, Kim YH, Bachinger HP, Boswell BA, Linder RA, Carver JA, Shearer TR, David LL, Kapfer DM (2002) Decreased heat stability and increased chaperone requirement of modified human betaB1-crystallins. Mol. Vis. 8:359–366

    CAS  PubMed  Google Scholar 

  • Lampi KJ, Wilmarth PA, Murray MR, David LL (2014) Lens β-crystallins: the role of deamidation and related modifications in aging and cataract. Prog Biophys Mol Biol 115:21–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang JJN, Chakrabarti B (1998) Intermolecular interaction of lens crystallins: from rotationally mobile to immobile states at high protein concentrations. Biochem Biophys Res Commun 246:441–445

    Article  CAS  PubMed  Google Scholar 

  • Liang JN, Li XY (1991) Interaction and aggregation of lens crystallins. Exp Eye Res 53:61–66

    Article  CAS  PubMed  Google Scholar 

  • Lubsen NH, Aarts HJ, Schoenmakers JG (1988) The evolution of lenticular proteins: the beta- and gamma-crystallin super gene family. Prog Biophys Mol Biol 51:47–76

    Article  CAS  PubMed  Google Scholar 

  • MacDonald JT, Purkiss AG, Smith MA, Evans P, Goodfellow JM, Slingsby C (2005) Unfolding crystallins: the destabilizing role of a beta-hairpin cysteine in betaB2-crystallin by simulation and experiment. Protein Sci 14:1282–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mach H, Trautman PA, Thomson JA, Lewis RV, Middaugh CR (1990) Inhibition of alpha-crystallin aggregation by gamma-crystallin. J Biol Chem 265:4844–4848

    CAS  PubMed  Google Scholar 

  • Mainz A, Bardiaux B, Kuppler F, Multhaup G, Felli IC, Pierattelli R, Reif B (2012) Structural and mechanistic implications of metal binding in the small heat-shock protein αB-crystallin. J Biol Chem 287:1128–1138

    Article  CAS  PubMed  Google Scholar 

  • Manski W, Naliitowski K, Boxitsis G (1979) Immunochemical studies on lens protein-protein complexes I. the heterogeneity and structure of complexed α-crystallin. Exp Eye Res 29:625–635

    Article  CAS  PubMed  Google Scholar 

  • Merck KB, de Haard-Hoekman WA, Oude Essink BB, Bloemendal H, de Jong WW (1992) Expression and aggregation of recombinant αA-crystallin and its two domains. Biochim Biophys Acta 1130:267–276

    Article  CAS  PubMed  Google Scholar 

  • Merck KB, Horwitz J, Kersten M, Overkamp P, Gaestel M, Bloemendal H, de Jong WW (1993) Comparison of the homologous carboxy-terminal domain and tail of α-crystallin and small heat shock protein. Mol Biol Rep 18:209–215

    Article  CAS  PubMed  Google Scholar 

  • Mills IA, Flaugh SL, Kosinski-Collins MS, King JA (2007) Folding and stability of the isolated Greek key domains of the long-lived human lens proteins γD-crystallin and γS-crystallin. Protein Sci 16:2427–2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills-Henry IAR (2007) Stability, unfolding, and aggregation of the gamma D and gamma S human eye lens crystallins. Ph.D. thesis from Department of Biology, MIT, Cambridge, USA

    Google Scholar 

  • Mishra A, Krishnan B, Swaroop SS, Sharma Y (2014) Microbial βγ-crystallins. Prog Biophys Mol Biol 115:42–51

    Article  CAS  PubMed  Google Scholar 

  • Moreau KL, King J (2009) Hydrophobic core mutations associated with cataract development in mice destabilize human gamma D-crystallin. J Biol Chem 284:33285–33295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreau KL, King JA (2012) Cataract-causing defect of a mutant gamma crystallin proceeds through an aggregation pathway which bypasses recognition by the alpha-crystallin chaperone. PLoS ONE 7:e37256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan CF, Schleich T, Caines GH, Farnsworth PN (1989) Elucidation of intermediate (mobile) and slow (solid like) protein motions in bovine lens homogenates by carbon-13 NMR spectroscopy. Biochemistry 28:5065–5074

    Article  CAS  PubMed  Google Scholar 

  • Peschek J, Braun N, Rohrberg J, Back KC, Kriehuber T, Kastenmüller A, Weinkauf S, Buchner J (2013) Regulated structural transitions unleash the chaperone activity of αB-crystallin. Proc Natl Acad Sci U S A 110:3780–3789

    Article  Google Scholar 

  • Ponce A, Takemoto L (2005) Screening of crystallin-crystallin interactions using microequilibrium dialysis. Mol Vis 11:752–757

    CAS  PubMed  Google Scholar 

  • Purkiss AG, Bateman OA, Goodfellow JM, Lubsen NH, Slingsby C (2002) The X-ray crystal structure of human gamma S-crystallin C-terminal domain. J Biol Chem 277:4199–4205

    Article  CAS  PubMed  Google Scholar 

  • Purkiss AG, Bateman OA, Wyatt K, Wilmarth PA, David LL, Wistow GJ, Slingsby C (2007) Biophysical properties of γC-crystallin in human and mouse eye lens: the role of molecular dipoles. J Mol Biol 372:205–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray NJ (2015) Biophysical chemistry of the ageing eye lens. Biophys Rev 7:353–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy GB, Kumar PA, Kumar MS (2006) Chaperone-like activity and hydrophobicity of alpha-crystallin. IUBMB Life 58:632–641

    Article  CAS  PubMed  Google Scholar 

  • Richardson JS (1977) Beta-sheet topology and the relatedness of proteins. Nature 268:495–500

    Article  CAS  PubMed  Google Scholar 

  • Robinson NE, Lampi KJ, Speir JP, Kruppa G, Easterling M, Robinson AB (2006) Quantitative measurement of young human eye lens crystallins by direct injection Fourier transform ion cyclotron resonance mass spectrometry. Mol Vis 12:704–711

    CAS  PubMed  Google Scholar 

  • Schafheimer N, King J (2013) Tryptophan cluster protects human γD-crystallin from ultraviolet radiation-induced photoaggregation in vitro. Photochem Photobiol 89:1106–1115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serebryany E, King JA (2014) The βγ-crystallins: native state stability and pathways to aggregation. Prog Biophys Mol Biol 115:32–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma V, Ghosh KS (2017) Inhibition of amyloid fibrillation and destabilization of fibrils of human γD-crystallin by direct red 80 and orange G. Intl J Biol Macromol 105:956–964

    Article  CAS  Google Scholar 

  • Sharma V, Ghosh KS (2019) Inhibition of amyloid fibrillation by small molecules and nanomaterials: strategic development of pharmaceuticals against amyloidosis. Prot Pept Lett (accepted)

    Google Scholar 

  • Sharma KK, Santhoshkumar P (2009) Lens aging: effects of crystallins. Biochim Biophys Acta 1790:1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siezen RI, Hoenders HJ (1979) The quaternary structure of bovine α-crystallin. Surface probing by limited proteolysis in vitro. Eur J Biochem 96:431–440

    Article  CAS  PubMed  Google Scholar 

  • Siezen RJ, Owen EA (1983) Interactions of lens proteins: self-association and mixed-association studies of bovine α -crystallin and γ-crystallin. Biophys Chem 18:181–194

    Article  CAS  PubMed  Google Scholar 

  • Siezen RJ, Thomson JA, Kaplan ED, Benedek GB (1987) Human lens gamma crystallins: isolation, identification, and characterization of the expressed gene products. Proc Natl Acad Sci U S A 84:6088–6092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha D, Wyatt MK, Sarra R, Jaworski C, Slingsby C, Thaung C, Pannell L, Robison WG, Favor J, Lyon M, Wistow G (2001) A temperature-sensitive mutation of Crygs in the murine Opj cataract. J Biol Chem 276:9308–9315

    Article  CAS  PubMed  Google Scholar 

  • Slingsby C, Bateman OA (1990) Quaternary interactions in eye lens beta-crystallins: basic and acidic subunits of beta-crystallins favor heterologous association. Biochemistry 29:6592–6599

    Article  CAS  PubMed  Google Scholar 

  • Slingsby C, Clout NJ (1999) Structure of the crystallins. Eye (Lond) 13:395–402

    Article  Google Scholar 

  • Slingsby C, Norledge B, Simpson A, Bateman OA, Wright G, Driessen HPC, Lindley PF, Moss DS, Bax B (1997) X-ray diffraction and structure of crystallins. Prog Ret Eye Res 16:3–29

    Article  CAS  Google Scholar 

  • Smith MA, Bateman OA, Jaenicke R, Slingsby C (2007) Mutation of interfaces in domain-swapped human βB2-crystallin. Protein Sci 16:615–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spector A (1964) Methods of isolation of alpha, beta, and gamma crystallins and their subgroups. Invest Ophthalmol 3:182–193

    CAS  PubMed  Google Scholar 

  • Srivastava K, Chaves JM, Srivastava OP, Kirk M (2008) Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses. Exp Eye Res 87:356–366

    Article  CAS  PubMed  Google Scholar 

  • Stevens A, Wang SX, Caines GH, Schleich T (1995) 13C-NMR off-resonance rotating frame spin-lattice relaxation studies of bovine lens gamma-crystallin self association: effect of macromolecular crowding. Biochim Biophys Acta 1246:82–90

    Article  PubMed  Google Scholar 

  • Stradner A, Foffi G, Dorsaz N, Thurston G, Schurtenberger R (2007) New insight into cataract formation: enhanced stability through mutual attraction. Phys Rev Lett 99:198103-1–198103-4

    Article  CAS  Google Scholar 

  • Sun TX, Akhtar NJ, Liang JJ (1999) Thermodynamic stability of human lens recombinant alphaA- and alphaB-crystallins. J Biol Chem 274:34067–34071

    Article  CAS  PubMed  Google Scholar 

  • Takemoto LJ, Ponce A (2006) Decreased association of aged alpha-crystallins with gamma crystallins. Exp Eye Res 83:793–797

    Article  CAS  PubMed  Google Scholar 

  • Takemoto L, Sorensen CM (2008) Protein-protein interactions and lens transparency. Exp Eye Res 87:496–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takemoto L, Ponce A, Sorensen CM (2008) Age-dependent association of gamma crystallins with aged alpha crystallins from old bovine lens. Mol. Vis. 14:970–974

    PubMed  PubMed Central  Google Scholar 

  • Tardieu A, Veretout F, Krop B, Slingsby C (1992) Protein interactions in the calf eye lens: interactions between alpha-crystallins are repulsive whereas in gamma-crystallins they are attractive. Eur Biophys J 21:1–12

    Article  CAS  PubMed  Google Scholar 

  • Thurston GM, Pande J, Ogun O, Benedek GB (1999) Static and quasielastic light scattering and phase separation of concentrated ternary mixtures of bovine alpha and gammaB crystallins. Invest Ophthalmol Vis Sci 40:S299

    Google Scholar 

  • Treweek TM, Rekas A, Walker MJ, Carver JA (2010) A quantitative NMR spectroscopic examination of the flexibility of the C-terminal extensions of the molecular chaperones, αA- and αB-crystallin. Exp Eye Res 91:691–699

    Google Scholar 

  • Treweek TM, Meehan S, Ecroyd H, Carver JA (2015) Small heat-shock proteins: important players in regulating cellular proteostasis. Cell Mol Life Sci 72:429–451

    Article  CAS  PubMed  Google Scholar 

  • Vendra VPR, Khan I, Chandani S, Muniyandi A, Balasubramanian D (2016) Gamma crystallins of the human eye lens. Biochim Biophys Acta 1860:333–343

    Article  CAS  PubMed  Google Scholar 

  • Veretout F, Delaye M, Tardieu A (1989) Molecular basis of eye lens transparency: osmotic pressure and X-ray analysis of α-crystallin solutions. J Mol Biol 205:713–728

    Article  CAS  PubMed  Google Scholar 

  • Voorter CEM, Mulders JW, Bloemendal H, de Jong WW (1986) Some aspects of the phosphorylation of α-crystallin A. Eur J Biochem 160:203–210

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Petty SA, Trojanowski AT, Knee KM, Goulet DR, Mukerji I, King JA (2010) Formation of amyloid fibrils in vitro from partially unfolded intermediates of human gamma C-crystallin. Invest Ophthalmol Vis Sci 51:672–678

    Article  PubMed  PubMed Central  Google Scholar 

  • Wenk M, Herbst R, Hoeger D, Kretschmar M, Lubsen NH, Jaenicke R (2000) Gamma S crystallin of bovine and human eye lens: solution structure, stability and folding of the intact two-domain protein and its separate domains. Biophys Chem 86:95–108

    Article  CAS  PubMed  Google Scholar 

  • West SK, Duncan DD, Munoz B, Rubin GS, Fried LP, Bandeen-Roche K, Schein OD (1998) Sunlight exposure and risk of lens opacities in a population-based study: the Salisbury Eye Evaluation project. J Am Med Assoc 280:714–718

    Article  CAS  Google Scholar 

  • Wistow GJ, Piatigorsky J (1988) Lens crystallins: the evolution and expression of proteins for a highly specialized tissue. Annu Rev Biochem 57:479–504

    Article  CAS  PubMed  Google Scholar 

  • Wu Z, Delaglio F, Wyatt K, Wistow G, Bax A (2005) Solution structure of gamma-S-crystallin by molecular fragment replacement NMR. Protein Sci 14:3101–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu JW, Chen ME, Wen WS, Chen WA, Li CT, Chang CK, Lo CH, Liu HS, Wang SS (2014) Comparative analysis of human γD-crystallin aggregation under physiological and low pH conditions. PLoS ONE 9(11):e112309. https://doi.org/10.1371/journal.pone.0112309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia Z, Yang ZX, Huynh T, King JA, Zhou RH (2013) UV-radiation induced disruption of dry-cavities in human γD-crystallin results in decreased stability and faster unfolding. Sci Rep 3:1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Xia Z, Huynh T, King JA, Zhou R (2014) Dissecting the contributions of β-hairpin tyrosine pairs to the folding and stability of long-lived human γD-crystallins. Nanoscale 6:1797–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshida H, Yumoto N, Tsukahara I, Murachi T (1986) The degradation of α-crystallin at its carboxyl-terminal portion by calpain in bovine lens. Invest Ophthalmol Vis Sci 27:1269–1273

    CAS  PubMed  Google Scholar 

  • Zhao H, Chen Y, Rezabkova L, Wu Z, Wistow G, Schuck P (2014) Solution properties of γ-crystallins: hydration of fish and mammal γ-crystallins. Protein Sci 23:88–99

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyan Sundar Ghosh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ghosh, K.S., Chauhan, P. (2019). Crystallins and Their Complexes. In: Harris, J., Marles-Wright, J. (eds) Macromolecular Protein Complexes II: Structure and Function . Subcellular Biochemistry, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-030-28151-9_14

Download citation

Publish with us

Policies and ethics