Skip to main content

Perturbation-Evoked Potentials: Future Usage in Human-Machine Interaction

  • Conference paper
  • First Online:
Information Systems and Neuroscience

Part of the book series: Lecture Notes in Information Systems and Organisation ((LNISO,volume 32))

Abstract

Brain-computer interfaces (BCIs) can be used to improve human-machine interactions (HMIs) by providing implicit information about the mental state. We introduce a brain activity, perturbation-evoked potentials (PEPs), that was not yet investigated in the context of BCIs although it has the required properties. An experimental setup for studying PEPs is proposed and validated and two possible use cases for this brain activity are introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain–computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791.

    Article  Google Scholar 

  2. Müller-Putz, G. R., Scherer, R., Pfurtscheller, G., & Rupp, R. (2005). EEG-based neuroprosthesis control: A step towards clinical practice. Neuroscience Letters, 382(1–2), 169–174.

    Article  Google Scholar 

  3. Leeb, R., Friedman, D., Müller-Putz, G. R., Scherer, R., Slater, M., & Pfurtscheller, G. (2007). Self-paced (asynchronous) BCI control of a wheelchair in virtual environments: A case study with a tetraplegic. Computational Intelligence and Neuroscience.

    Google Scholar 

  4. Pfurtscheller, G., Müller-Putz, G. R., Scherer, R., & Neuper, C. (2008). Rehabilitation with brain-computer interface systems. Computer, 41(10), 58–65.

    Article  Google Scholar 

  5. Müller-Putz, G. R., Riedl, R., & Wriessnegger, S. C. (2015). Electroencephalography (EEG) as a research tool in the information systems discipline: Foundations, measurement, and applications. CAIS, 37, 46.

    Article  Google Scholar 

  6. Bauernfeind, G., Wriessnegger, S., & Müller-Putz, G. (2014). Using near-infrared spectroscopy (NIRS) for brain-computer interface (BCI) systems. In Human Cognitive Neurophysiology.

    Google Scholar 

  7. Weiskopf, N., Mathiak, K., Bock, S. W., Scharnowski, F., Veit, R., Grodd, W., et al. (2004). Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Transactions on Biomedical Engineering, 51(6), 966–970.

    Article  Google Scholar 

  8. Brunner, P., Ritaccio, A. L., Emrich, J. F., Bischof, H., & Schalk, G. (2011). Rapid communication with a “P300” matrix speller using electrocorticographic signals (ECoG). Frontiers in Neuroscience, 5, 5.

    Article  Google Scholar 

  9. Wodlinger, B., Downey, J. E., Tyler-Kabara, E. C., Schwartz, A. B., Boninger, M. L., & Collinger, J. L. (2014). Ten-dimensional anthropomorphic arm control in a human brain−machine interface: Difficulties, solutions, and limitations. Journal of Neural Engineering, 12(1), 016011.

    Article  Google Scholar 

  10. Fernández, E., Greger, B., House, P. A., Aranda, I., Botella, C., Albisua, J., et al. (2014). Acute human brain responses to intracortical microelectrode arrays: Challenges and future prospects. Frontiers in Neuroengineering, 7, 24.

    Article  Google Scholar 

  11. Sellers, E. W., & Donchin, E. (2006). A P300-based brain–computer interface: Initial tests by ALS patients. Clinical Neurophysiology, 117(3), 538–548.

    Article  Google Scholar 

  12. Pereira, J., Ofner, P., Schwarz, A., Sburlea, A. I., & Müller-Putz, G. R. (2017). EEG neural correlates of goal-directed movement intention. Neuroimage, 149, 129–140.

    Article  Google Scholar 

  13. Müller-Putz, G. R., Scherer, R., Neuper, C., & Pfurtscheller, G. (2006). Steady-state somatosensory evoked potentials: Suitable brain signals for brain-computer interfaces? IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(1), 30–37.

    Article  Google Scholar 

  14. Zander, T. O., Kothe, C. A., Welke, S., & Rötting, M. (2008). Enhancing human–machine systems with secondary input from passive brain–computer interfaces. In Proceedings of the 4th International Brain–Computer Interface Workshop & Training Course (pp. 144–149). Graz, Austria: Verlag der Technischen Universität Graz.

    Google Scholar 

  15. Zander, T. O., Krol, L. R., Birbaumer, N. P., & Gramann, K. (2016). Neuroadaptive technology enables implicit cursor control based on medial prefrontal cortex activity. Proceedings of the National Academy of Sciences, 113(52), 14898–14903.

    Article  Google Scholar 

  16. Parra, L. C., Spence, C. D., Gerson, A. D., & Sajda, P. (2003). Response error correction-a demonstration of improved human-machine performance using real-time EEG monitoring. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 173–177.

    Article  Google Scholar 

  17. Bos, D. P. O., Reuderink, B., van de Laar, B., Gürkök, H., Mühl, C., & Poel, M., et al. (2010). Brain-computer interfacing and games. In Brain-computer interfaces (pp. 149–178). London: Springer.

    Google Scholar 

  18. Holroyd, C. B., & Coles, M. G. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109(4), 679.

    Article  Google Scholar 

  19. Varghese, J. P., McIlroy, R. E., & Barnett-Cowan, M. (2017). Perturbation-evoked potentials: Significance and application in balance control research. Neuroscience and Biobehavioral Reviews, 83, 267–280.

    Article  Google Scholar 

  20. Dietz, V., Quintern, J., & Berger, W. (1984). Cerebral evoked potentials associated with the compensatory reactions following stance and gait perturbation. Neuroscience Letters, 50(1–3), 181–186.

    Article  Google Scholar 

  21. Duckrow, R. B., Abu-Hasaballah, K., Whipple, R., & Wolfson, L. (1999). Stance perturbation-evoked potentials in old people with poor gait and balance. Clinical Neurophysiology, 110(12), 2026–2032.

    Article  Google Scholar 

  22. Adkin, A. L., Quant, S., Maki, B. E., & McIlroy, W. E. (2006). Cortical responses associated with predictable and unpredictable compensatory balance reactions. Experimental Brain Research, 172(1), 85.

    Article  Google Scholar 

  23. Mochizuki, G., Sibley, K. M., Cheung, H. J., Camilleri, J. M., & McIlroy, W. E. (2009). Generalizability of perturbation-evoked cortical potentials: Independence from sensory, motor and overall postural state. Neuroscience Letters, 451(1), 40–44.

    Article  Google Scholar 

  24. Quant, S., Adkin, A. L., Staines, W. R., & McIlroy, W. E. (2004). Cortical activation following a balance disturbance. Experimental Brain Research, 155(3), 393–400.

    Article  Google Scholar 

  25. Marlin, A., Mochizuki, G., Staines, W. R., & McIlroy, W. E. (2014). Localizing evoked cortical activity associated with balance reactions: Does the anterior cingulate play a role? American Journal of Physiology-Heart and Circulatory Physiology.

    Google Scholar 

  26. Staines, R. W., McIlroy, W. E., & Brooke, J. D. (2001). Cortical representation of whole-body movement is modulated by proprioceptive discharge in humans. Experimental Brain Research, 138(2), 235–242.

    Article  Google Scholar 

  27. Dietz, V., Quintern, J., Berger, W., & Schenck, E. (1985). Cerebral potentials and leg muscle emg responses associated with stance perturbation. Experimental Brain Research, 57(2), 348–354.

    Article  Google Scholar 

  28. Quintern, J., Berger, W., & Dietz, V. (1985). Compensatory reactions to gait perturbations in man: Short-and long-term effects of neuronal adaptation. Neuroscience Letters, 62(3), 371–375.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gernot R. Müller-Putz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ditz, J.C., Müller-Putz, G.R. (2020). Perturbation-Evoked Potentials: Future Usage in Human-Machine Interaction. In: Davis, F., Riedl, R., vom Brocke, J., Léger, PM., Randolph, A., Fischer, T. (eds) Information Systems and Neuroscience. Lecture Notes in Information Systems and Organisation, vol 32. Springer, Cham. https://doi.org/10.1007/978-3-030-28144-1_30

Download citation

Publish with us

Policies and ethics