Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 377 Accesses

Abstract

The industrial aim associated to this project is to improve the efficiency of a novel device that separates glass and plastic particles from a co-mingled waste product coming from Material Recovery Facilities (MRF). This waste product is mainly composed of glass, plastic, paper-based materials and metals. However, most of the metals are removed from the raw product before this enters the separator, whereas paper and other cellulose-based materials are suspended in water. Thus, the main task of this device is to separate plastics that are lighter and heavier than water from glass; and the later water treatment that permits to filter the pulp suspended in it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moffet RC, Prather KA (2009) In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. PNAS 106:11872–77

    Article  Google Scholar 

  2. Sabban L, van Hout R (2011) Measurements of pollen grain dispersal in still air and stationary near homogeneous, isotropic turbulence. J Aerosol Sci 42:867–882

    Article  Google Scholar 

  3. Janhall S (2015) Review on urban vegetation and particle air pollution - deposition and dispersion. Atmos Environ 105:130–137

    Article  Google Scholar 

  4. Monchaux R, Bourgoin M, Cartellier A (2012) Analyzing preferential concentration and clustering of inertial particles in turbulence. Int J Multiph Flow 40

    Article  Google Scholar 

  5. Ashbaugh HS, Guo X, Schwahn D, Prudhomme RK, Richter D, Fetters LJ (2005) Interaction of paraffin wax gels with ethylene/vinyl acetate co-polymers. Energy Fuels 19:138–144

    Article  Google Scholar 

  6. Binks BP, Tyowua AT (2016) Oil-in-oil emulsions stabilised solely by solid particles. Soft Matter 12(3):876–888

    Article  Google Scholar 

  7. Sullivan AP, Kilpatrick PK (2002) The effects of inorganic solid particles on water and crude oil emulsion stability. Ind Eng Chem Res 41:3389–3404

    Article  Google Scholar 

  8. Sinquin A, Palermo T, Peysson Y (2004) Rheological and flow properties of gas hydrate suspensions. Oil Gas Sci Technol 59(1):41–57

    Article  Google Scholar 

  9. Muller RH, Radtke M, Wissing SA (2002) Solid lidip nanoparticles (sln) and nanostructured lidip carriers (nlc) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:131–155

    Article  Google Scholar 

  10. Muller RH, Mader K, Gohla S (2000) Solid lidip nanoparticles (sln) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 50:161–177

    Article  Google Scholar 

  11. Derksen JJ (2009) Scalar mixing with fixed and fluidized particles in micro-reactors. Chem Eng Res Des 87:550–556

    Article  Google Scholar 

  12. Hoef MA, Annaland M, Deen NG, Kuipers JAM (2008) Numerical simulation of dense gas-solid fluidized beds: a multiscale modeling strategy. Ann Rev Fluid Mech 40:47–70

    Article  MathSciNet  MATH  Google Scholar 

  13. Bu C, Liu D, Chen X, Pallares D, Gomez A (2014) Ignition behavior of single coal particle in fluidized bed under \(o_2\)\(co_2\) and \(o_2\)\(n_2\) atmospheres: a combination of visual image and particle temperature. Appl Energy 115:301–308

    Article  Google Scholar 

  14. Son SY, Kihm KD (1998) Effect of coal particle size on coal-water slurry (cws) atomization. At Sprays 8:503–519

    Article  Google Scholar 

  15. Anping S, Fanghua L, Guosheng LHD, Xing Z (2016) Characteristics of particle size distributions for the collapsed riverbank along the desert reach of the upper yellow river. Int J Sediment Res

    Google Scholar 

  16. Barhtyar R, Barry D, Li L, Jeng D, Yeganeh B (2009) Modeling sediment transport in the swash zone: a review. Ocean Eng 36:767–783

    Article  Google Scholar 

  17. Dail HJ, Merrifield MA, Bevis M (2000) Steep beach morphology changes due to energetic wave forcing. Mar Geol 162:443–458

    Article  Google Scholar 

  18. Kolb CE, Worsnop DR (2012) Chemistry and compositions of atmospheric aerosol particles. Ann Rev Phys Chem 63:471–491

    Article  Google Scholar 

  19. Balachandar S, Eaton JK (2010) Turbulent dispersed multiphase flow. Ann Rev Fluid Mech 42:113–133

    Article  MATH  Google Scholar 

  20. Gore RA, Crowe CT (1989) Effect of particle size on modulating turbulent intensity. Int J Multiph Flow 15(2):279–285

    Article  Google Scholar 

  21. Fox RO (2012) Large-eddy-simulation tools for multiphase flows. Ann Rev Fluid Mech 44:47–76

    Article  MathSciNet  MATH  Google Scholar 

  22. Subramaniam S (2013) Lagrangian-eulerian methods for multiphase flows. Prog Energy Combust Sci 39:215–245

    Article  Google Scholar 

  23. Gouesbet G, Berlemont A (1999) Eulerian and lagrangian approaches for predicting the behaviour of discrete particles in turbulent flows. Prog Energy Combust Sci 25:133–159

    Article  Google Scholar 

  24. Toschi F, Bodenschatz E (2009) Lagrangian properties of particles in turbulence. Ann Rev Fluid Mech 41:375–404

    Article  MathSciNet  MATH  Google Scholar 

  25. Loth E (2008) Drag of non-spherical solid particles of regular and irregular shape. Powder Technol 182:342–353

    Article  Google Scholar 

  26. Holzer A, Sommerfeld M (2008) New simple correlation formula for the drag coefficient on non-spherical particles. Powder Technol 184:361–365

    Article  Google Scholar 

  27. Gabitto J, Tsouris C (2008) Drag coefficient and settling velocity for particles of cylindrical shape. Powder Technol 183:314–322

    Article  Google Scholar 

  28. Fornari W, Picano F, Brandt L (2016a) Sedimentation of finite-size spheres in quiescent and turbulent environments. J Fluid Mech 788:640–669

    Article  MathSciNet  MATH  Google Scholar 

  29. Byron M, Einarsson J, Gustavsson K, Voth G, Mehlig B, Variano E (2015) Shape-dependence of particle rotation in isotropic turbulence. Phys Fluids 27:035101

    Article  Google Scholar 

  30. Klein S, Gibert M, Berut A, Bodenschatz E (2013) Simultaneous 3d measurement of the translation and rotation of finite size particles and the flow field in a fully developed turbulent water flow. Meas Sci Technol 24

    Article  Google Scholar 

  31. Meyer CR, Byron ML, Variano EA (2013) Rotational diffusion of particles in turbulence. Limnol Ocean: Fluids Environ 3:89–102

    Article  Google Scholar 

  32. Bellani G, Margaret LB, Collignon AG, Colin RM, Variano EA (2012) Shape effects on turbulent modulation by large nearly neutrally bouyant particles. J Fluid Mech 712:41–60

    Article  MathSciNet  MATH  Google Scholar 

  33. Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF (2011). Tracking the dynamics of translation and absolute orientation of a sphere in a turbulent flow. Rev Sci Instrum 82

    Article  Google Scholar 

  34. Zimmermann R, Gasteuil Y, Bourgoin M, Volk R, Pumir A, Pinton JF (2011). Rotational intermittency and turbulence induced lift experienced by large particles in a turbulent flow. Phys Rev Lett 106, 154501

    Google Scholar 

  35. Taylor JR (2005) Classical mechanics. University Science Books, Mill Valley

    MATH  Google Scholar 

  36. Basset AB (1888) A treatise on hydrodynamics. Deighton Bell, Cambridge, p 2

    Google Scholar 

  37. Boussinesq J (1903) Theorie analitique de la chaleur. Gauthier-Villars, Paris, p 2

    Google Scholar 

  38. Oseen CW (1927) Hydrodynamik. Akademische Verlag, Leipzig, p 2

    MATH  Google Scholar 

  39. Tchen CM (1947). Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid. PhD thesis, TU Delft, Delft University of Technology

    Google Scholar 

  40. Maxey MR, Riley JJ (1983) Equation of motion for a small rifid sphere in a nonuniform flow. Phys Fluids 26(4):883–889

    Article  MATH  Google Scholar 

  41. Clift R, Grace JR, Weber ME (1978) Bubbles, drops, and particles. Academic, New York

    Google Scholar 

  42. Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large reynolds. C. R. Acad Sci U. R. S. S. 30:301

    MathSciNet  Google Scholar 

  43. Elghobashi S, Truesdell GC (1992) Direct simulation of particle dispersion in a decaying isotropic turbulence. J Fluid Mech 242:655–700

    Article  Google Scholar 

  44. Ruetsch GR, Meiburg E (1993) On the motion of small spherical bubbles in two-dimensional vortical flows. Phys Fluids A 5:2326–2341

    Article  MATH  Google Scholar 

  45. Lasheras JC, Tio KK (1994) Dynamics of a small spherical particle in steady two-dimensional vortex flows. Appl Mech Rev 6(47):61–69

    Article  Google Scholar 

  46. Tio KK, Ganan AM, Lasheras JC (1993) The dynamics of small, heavy, rigid, spherical particle in a periodic stuart vortex flow. Phys Fluids A 5:1679–1693

    Article  MathSciNet  MATH  Google Scholar 

  47. Wang LP, Maxey MR (1993) Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 256:27–68

    Article  Google Scholar 

  48. Truesdell GC, Elghobashi S (1994) On the two way interaction between homogeneous turbulence and dispersed solid particles. ii. Phys Fluids 6:1405–1407

    Article  Google Scholar 

  49. Yang CY, Lei U (1998) The role of the turbulent scales in the settling velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 371:179–205

    Article  MATH  Google Scholar 

  50. Aliseda A, Cartellier A, Hainaux F, Lasheras JC (2002) Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 468:77–105

    Article  MATH  Google Scholar 

  51. Wood AM, Hwang W, Eaton JK (2005) Preferential concentration of particles in homogeneous and isotropic turbulence. Int J Multiph Flow 31:1220–1230

    Article  MATH  Google Scholar 

  52. Maxey MR, Corrsin S (1986) Gravitational settling of aerosol particles in randomly oriented cellular flow fields. J Atmos Sci 43:1112–1134

    Article  Google Scholar 

  53. Yang TS, Shy SS (2003) The settling velocity of heavy particles in an aqueous near-isotropic turbulence. Phys Fluids 15(4):868–880

    Article  MATH  Google Scholar 

  54. Obligado M, Teitelbaum T, Cartellier A, Mininni P, Bourgoin M (2014) Preferential concentration of heavy particles in turbulence. J Turbul 15:293–310

    Article  Google Scholar 

  55. Xu H, Bodenschatz E (2008) Motion of inertial particles with size larger than kolmogorov scale in turbulent flows. Phys D Nonlinear Phenom

    Google Scholar 

  56. Voth GA, Porta A, Crawford AM, Alezander J, Bodenschatz E (2002) Measurement of particle accelerations in fully developed turbulence. J Fluid Mech 469:121–160

    Article  MATH  Google Scholar 

  57. Ott S, Mann J (2000) An experimental investigation of the relative diffusion of particle paris in three-dimensional turbulent flow. J FLuid Mech 422:207–223

    Article  MATH  Google Scholar 

  58. Schmitt FG, Seuront L (2008) Intermittent turbulence and copepod dynamics: increase in encounter rates through preferential concentration. J Mar Syst 70:263–272

    Article  Google Scholar 

  59. Qureshi NM, Bourgoin M, Baudet C, Cartellier A, Gagne Y (2007) Turbulent transport of material particles: an experimental study of finite size effect. Phys Rev Lett 99:184502

    Google Scholar 

  60. Bagchi P, Balachandar S (2013) Effect of turbulence on the drag and lift of a particle. Phys Fluids 11(15):3496–3513

    MATH  Google Scholar 

  61. Willmarth WW, Hawk NE, Harvey RL (1964) Steady and unsteady motions and wakes of freely falling disks. Phys Fluids 7:197–208

    Article  MATH  Google Scholar 

  62. Rhodes M (2008) Introduction to particle technology, 2nd edn. Wiley, New York

    Book  Google Scholar 

  63. Allen T (1990) Particle size measurements, vol 20, 4th edn. Chapman and hall, London

    Book  Google Scholar 

  64. Wadell H (1934) Some new sedimentation formulas. Physics 5:281–291

    Article  Google Scholar 

  65. Christiansen EB, Barker DH (1965) The effect of shape and density on the free settling of particle at high reynolds number. AIChE J 50(11):145–151

    Article  Google Scholar 

  66. List R, Schemenauer RS (1971) Free-fall behaviour of planar snow crystals, conical graupel and small hail. J Atmos Sci 28:110–115

    Article  Google Scholar 

  67. Leith D (1987) Drag on non-spherical objects. Aerosol Sci Tech 6:153–161

    Article  Google Scholar 

  68. Chhabra RP, Agarwal L, Sinha NK (1999) Drag on non-spherical particles: an evaluation of available methods. Powder Technol 101:288–295

    Article  Google Scholar 

  69. Haider AM, Levenspiel O (1989) Drag on non-spherical particles: an evaluation of available methods. Powder Technol 58:63–70

    Article  Google Scholar 

  70. Ganser GH (1993) A rational approach to drag prediction of spherical and nonspherical particles. Powder Technol 77:143–152

    Article  Google Scholar 

  71. Chien SF (1994) Settling velocity of irregularly shaped particles. SPE Drill Complet 9:281–289

    Article  Google Scholar 

  72. Hartman M, Trnka O, Svoboda K (1994) Free settling of nonspherical particles. Ind Eng Chem Res 33:1979–1983

    Article  Google Scholar 

  73. Swamee PK, Ohja CP (1991) Drag coefficient and fall velocity of nonspherical particles. J Hydr Eng 117:660–667

    Article  Google Scholar 

  74. Heymsfield AJ, Westbrook CD (2010) Advances in the estimation of ice particle fall speeds using laboratory and field measurements. Am MeteorolD Soc 2469–2482

    Article  Google Scholar 

  75. Mitchell DL (1996) use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J Atmos Sci 53:1710–1723

    Article  Google Scholar 

  76. Stringham GE, Simons DB, Guy HP (1969) The behaviour of large particles falling in quiescent liquids. U.S, Department of Interior

    Google Scholar 

  77. Field SB, Klaus M, Moore MG, Nori F (1977) Chaotic dynamics of falling disks. Nature 388:252–254

    Article  Google Scholar 

  78. Maxwell JC (1853) On a particular case of the descent of a heavy body in a resisting medium. Camb Dublin Math J 9:115–118

    Google Scholar 

  79. Dupleich P (1941) Rotation in free fall of rectangular wings of elongated shape. NACA Tech. Memo 1201:1–99

    Google Scholar 

  80. Smith EH (1971) Autorotating wings: an experimental investigation. J Fluid Mech 50:513–534

    Article  Google Scholar 

  81. Belmonte A, Eisenberg H, Moses E (1998) From flutter to tumble: intertial drag and froude similarity in falling paper. Phys Rev Lett 81:345–348

    Article  Google Scholar 

  82. Mahadevan L, Ryu WS, Samuel ADT (1999) Tumbling cards. Phys Fluids 11:1–3

    Article  MATH  Google Scholar 

  83. Andersen A, Pesavento U, Wang ZJ (2005b) Unsteady aerodynamics of fluttering and tumbling plates. J Fluid Mech 541:65–90

    Article  MathSciNet  MATH  Google Scholar 

  84. Andersen A, Pesavento U, Wang ZJ (2005a) Analysis of transitions between fluttering, tumbling and steady descent of falling cards. J Fluid Mech 541:91–104

    Article  MathSciNet  MATH  Google Scholar 

  85. Auguste F, Magnaudet J, Fabre D (2013) Falling styles of disks. J Fluid Mech. 719:388–405

    Article  MATH  Google Scholar 

  86. Churst M, Bouchet G, Dusek J (2013) Numerical simulation of the dynamics of freely falling discs. Phys Fluids 25:044102

    Article  Google Scholar 

  87. Jayaweera KOLF, Mason BJ (1965) The behaviour of freely falling cylinders and cones in a viscous fluid. J Fluid Mech 22:709–720

    Article  MATH  Google Scholar 

  88. Gustavsson K, Einarsson J, Mehlig B (2014) Tumbling of small axisymmetric particles in random and turbulent flows. Phys Rev Lett 112:014501

    Google Scholar 

  89. Parsa S, Calzavarini E, Toschi F, Voth GA (2012) Rotation rate of rods in turbulent fluid flow. Phys Rev Lett 109:1–10

    Article  Google Scholar 

  90. Marcus GG, Parsa S, Kramel S, Ni R, Voth GA (2014) Measurement of the solid-body rotation of anisotropic particles in 3d turbulence. New J Phys 16:102001

    Article  Google Scholar 

  91. Ni R, Ouellette NT, Voth GA (2014). Alignment of vorticity and rods with lagrangian fluid stretching in turbulence. J Fluid Mech 743

    Google Scholar 

  92. Voth GA, Soldati A (2017) Anisotropic particles in turbulence. Ann Rev Fluid Mech 49:249–276

    Article  MathSciNet  MATH  Google Scholar 

  93. Shirolkar JS, Coimbra CFM, McQuay MQ (1996) Fundamental aspect of modelling turbulence particle dispersion in dilute flows. Prog Energy Combust 22:363–399

    Google Scholar 

  94. Sun L, Lin JZ, Wu FL, Chen YM (2004) Effect of non-spherical particles on the fluid turbuelnce in a particulate pipe flow. J Hydrodyn 16(6)

    Google Scholar 

  95. Esteban LB, Shrimpton JS, Rogers P, Ingram R (2016) Three clean products from co-mingled waste using a novel hydrodynamic separator. Int J Sustain Dev Plan 11:792–803

    Article  Google Scholar 

  96. Tropea C, Yarin A, Foss JF (2007) Handbook of experimental fluid mechanics. Springer, Berlin

    Google Scholar 

  97. Navier CLMH (1822) Memoire ur les lois du mouvement des fluides. Mem Acad Sci Inst Fr 6:389–440

    Google Scholar 

  98. Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Blay Esteban .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blay Esteban, L. (2020). Introduction. In: Dynamics of Non-Spherical Particles in Turbulence. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-28136-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28136-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28135-9

  • Online ISBN: 978-3-030-28136-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics