Skip to main content

Information Services of Big Remote Sensing Data

  • Conference paper
  • First Online:
Big Scientific Data Management (BigSDM 2018)

Abstract

With the rapid development of earth-observation technologies, different kinds of remote-sensing data are available, including SAR, multi-spectral optical data and hyper-spectral optical data. Remote sensing is already in an era of big data, which results in great challenges of information services. On the one hand, the potential value behind remote-sensing data has not yet been effectively mined for the thematic applications; on the other hand, for some emergency applications such as quick response of natural disasters (earthquake, forest fires, etc.), remote-sensing data and its derived information should be instantly processed and provided. However, the traditional data service mode of remote sensing is unable to meet the needs of such kind of applications. This paper proposes a concept of information services for big remote sensing data based on the needs of remote-sensing applications. The challenges of a big remote sensing data service are first discussed, and then the concept, framework, and key technologies of information service for big remote sensing data are also addressed.

This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19090300), the National Natural Science Foundation of China (61731022 and 61701495), the Open Research Fund of Key Laboratory of Digital Earth Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences (No. 2016LDE006), the National Key Research and Development Programs of China (Grant No. 2016YFA0600302 and 2016YFB0502502), the Hainan Provincial Department of Science and Technology under the grant No. ZDKJ2016021, ZDKJ2016015-1 and ZDKJ2017009. The authors thank the anonymous reviewers for their valuable suggestions and comments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boriah, S.: Time series change detection: algorithms for land cover change. Ph.D. thesis (2010)

    Google Scholar 

  2. Cao, L., Wang, C., Li, J.: Vehicle detection from highway satellite images via transfer learning. Inf. Sci. 366, 177–187 (2016). https://doi.org/10.1016/j.ins.2016.01.004

    Article  MathSciNet  Google Scholar 

  3. Cheng, G., Zhou, P., Han, J.: Learning rotation-invariant convolutional neural networks for object detection in VHR optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 54(12), 7405–7415 (2016)

    Article  Google Scholar 

  4. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary environments. IEEE Trans. Neural Netw. 22(10), 1517–1531 (2011). https://doi.org/10.1109/TNN.2011.2160459

    Article  Google Scholar 

  5. GEO: 2017–2019 Work Programme (2016)

    Google Scholar 

  6. Guo, H.: Big data drives the development of earth science. Big Earth Data 1(1–2), 1–3 (2017). https://doi.org/10.1080/20964471.2017.1405925

    Article  Google Scholar 

  7. Guo, H.: Big earth data: a new frontier in earth and information sciences. Big Earth Data 1(1–2), 4–20 (2017). https://doi.org/10.1080/20964471.2017.1403062

    Article  Google Scholar 

  8. Guo, H.: A project on big earth data science engineering. Bull. Chin. Acad. Sci. 33(08), 818–824 (2018). https://doi.org/10.16418/j.issn.1000-3045.2018.08.008

    Article  Google Scholar 

  9. Guo, H., Wang, L., Liang, D.: Big earth data from space: a new engine for earth science. Sci. Bull. 61(7), 505–513 (2016). https://doi.org/10.1007/s11434-016-1041-y

    Article  Google Scholar 

  10. Hansen, M.C., Potapov, P.V., Moore, R., Hancher, M., Turubanova, S.A., Tyukavina, A.: High-resolution global maps of 21st-centuary forest cover change. Science 342(6160), 850–853 (2013). https://doi.org/10.1126/science.1244693

    Article  Google Scholar 

  11. He, G., et al.: Opening and sharing of big earth observation data: challenges and countermeasures. Bull. Chin. Acad. Sci. 33(08), 783–790 (2018). https://doi.org/10.16418/j.issn.1000-3045.2018.08.003. http://www.bulletin.cas.cn/publish%20article/2018/8/20180805.htm

    Article  Google Scholar 

  12. He, G., et al.: Processing of earth observation big data: challenges and countermeasures. Chin. Sci. Bull. 60(5–6), 470 (2015). https://doi.org/10.1360/N972014-00907

    Article  Google Scholar 

  13. He, G., et al.: Generation of ready to use (RTU) products over China based on Landsat series data. Big Earth Data 2(1), 56–64 (2018). https://doi.org/10.1080/20964471.2018.1433370. https://www.tandfonline.com/doi/full/10.1080/20964471.2018.1433370

    Article  Google Scholar 

  14. Irons, J.R., Dwyer, J.L., Barsi, J.A.: The next landsat satellite: the landsat data continuity mission. Remote Sens. Environ. 122, 11–21 (2012). https://doi.org/10.1016/j.rse.2011.08.026

    Article  Google Scholar 

  15. JAXA - Japan Aerospace Exploration Agency: Calibration Result of JAXA standard products (As of 6 September 2011) (2011)

    Google Scholar 

  16. Jean, N., Burke, M., Xie, M., Davis, W.M., Lobell, D.B., Ermon, S.: Combining satellite imagery and machine learning to predict poverty. Science 353(6301), 790–4 (2016). https://doi.org/10.1126/science.aaf7894. http://www.ncbi.nlm.nih.gov/pubmed/27540167

    Article  Google Scholar 

  17. Justice, C.O., et al.: An overview of MODIS Land data processing and product status. Remote Sens. Environ. 83(1–2), 3–15 (2002). https://doi.org/10.1016/S0034-4257(02)00084-6

    Article  Google Scholar 

  18. Kuenzer, C., Dech, S., Wagner, W.: Remote sensing time series revealing land surface dynamics: status quo and the pathway ahead. In: Kuenzer, C., Dech, S., Wagner, W. (eds.) Remote Sensing Time Series. RSDIP, vol. 22, pp. 1–24. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15967-6_1

    Chapter  Google Scholar 

  19. Li, D.R., Tong, Q.X., Li, R.X., Gong, J.Y., Zhang, L.P.: Current issues in high-resolution earth observation technology. Sci. China Earth Sci. 55(7), 1043–1051 (2012). https://doi.org/10.1007/s11430-012-4445-9

    Article  Google Scholar 

  20. Liu, H., He, G., Jiao, W., Wang, G., Peng, Y., Cheng, B.: Sequential pattern mining of land cover dynamics based on time-series remote sensing images. Multimedia Tools Appl. 76(21), 22919–22942 (2017)

    Article  Google Scholar 

  21. Liu, J., Ma, C., Chen, F., Zhang, J., Qu, Q.: Design and implementation of active-based instant remote sensing data service. Remote Sens. Inf. 31(3), 61–67 (2016)

    Google Scholar 

  22. Long, T.: Efficient positioning technology for instant satellite image service. Ph.D. thesis, Beijing (2016)

    Google Scholar 

  23. Long, T., Jiao, W., He, G.: RPC RPC estimation via 1-norm-regularized least squares (L1LS). IEEE Trans. Geosci. Remote Sens. 53(8), 4554–4567 (2015). https://doi.org/10.1109/TGRS.2015.2401602

    Article  Google Scholar 

  24. Long, T., Jiao, W., He, G., Zhang, Z.: A fast and reliable matching method for automated georeferencing of remotely-sensed imagery. Remote Sens. 8(1), 56 (2016). https://doi.org/10.3390/rs8010056

    Article  Google Scholar 

  25. Luus, F.P.S., Salmon, B.P., van den Bergh, F., Maharaj, B.T.J.: Multiview deep learning for land-use classification. IEEE Geosci. Remote Sens. Lett. 12(12), 2448–2452 (2015)

    Article  Google Scholar 

  26. Mialhe, F., Gunnell, Y., Ignacio, J.A.F., Delbart, N., Ogania, J.L., Henry, S.: Monitoring land-use change by combining participatory land-use maps with standard remote sensing techniques: showcase from a remote forest catchment on Mindanao, Philippines. Int. J. Appl. Earth Obs. Geoinf. 36, 69–82 (2015). https://doi.org/10.1016/j.jag.2014.11.007

    Article  Google Scholar 

  27. Pekel, J.F., Cottam, A., Gorelick, N., Belward, A.S.: High-resolution mapping of global surface water and its long-term changes. Nature 540(7633), 418–422 (2016). https://doi.org/10.1038/nature20584

    Article  Google Scholar 

  28. Song, H., Huang, B.: Spatiotemporal satellite image fusion through one-pair image learning. IEEE Trans. Geosci. Remote Sens. 51(4), 1883–1896 (2013). https://doi.org/10.1109/TGRS.2012.2213095

    Article  Google Scholar 

  29. Song, X., He, G., Zhang, Z., Long, T., Peng, Y., Wang, Z.: Visual attention model based mining area recognition on massive high-resolution remote sensing images. Cluster Comput. 18(2), 541–548 (2015). https://doi.org/10.1007/s10586-015-0438-8

    Article  Google Scholar 

  30. Tengfei, L., Weili, J., Guojin, H.: Nested regression based optimal selection (NRBOS) of rational polynomial coefficients. Photogram. Eng. Remote Sens. 80(3), 261–269 (2014). https://doi.org/10.14358/PERS.80.3.261

    Article  Google Scholar 

  31. Wang, L., Lu, K., Liu, P., Ranjan, R., Chen, L.: IK-SVD: Dictionary learning for spatial big data via incremental atom update. Comput. Sci. Eng. 16(4), 41–52 (2014). https://doi.org/10.1109/MCSE.2014.52

    Article  Google Scholar 

  32. Wang, L., Ma, Y., Yan, J., Chang, V., Zomaya, A.Y.: pipsCloud: high performance cloud computing for remote sensing big data management and processing. Future Gener. Comput. Syst. 78, 353–368 (2018). https://doi.org/10.1016/j.future.2016.06.009

    Article  Google Scholar 

  33. Wang, L., Song, W., Liu, P.: Link the remote sensing big data to the image features via wavelet transformation. Cluster Comput. 19(2), 793–810 (2016). https://doi.org/10.1007/s10586-016-0569-6

    Article  Google Scholar 

  34. Wang, L., et al.: G-Hadoop\(\_\)Mapreduce across distributed data centers for data-intensive computing.pdf. Future Gener. Comput. Syst. 29(3), 739–750 (2013). https://doi.org/10.1016/j.future.2012.09.001

    Article  Google Scholar 

  35. Wang, L., Zhang, J., Liu, P., Choo, K.K.R., Huang, F.: Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classication. Soft. Comput. 21(1), 213–221 (2017). https://doi.org/10.1007/s00500-016-2246-3

    Article  MATH  Google Scholar 

  36. Yuan, M.: Development of remote sensing satellites and their business models. Satell. Appl. 3, 15–19 (2015)

    Google Scholar 

  37. Zhang, Z., He, G., Wang, M., Wang, Z., Long, T., Peng, Y.: Detecting decadal land cover changes in mining regions based on satellite remotely sensed imagery: a case study of the stone mining area in Luoyuan County. SE China. Photogram. Eng. Remote Sens. 81(9), 745–751 (2015). https://doi.org/10.14358/PERS.81.9.745

    Article  Google Scholar 

  38. Zhao, S.: The technology and application of multi-source remote sensing image fusion. Nanjing University Press (2008)

    Google Scholar 

  39. Zhao, Y., Huang, B., Wang, C.: Multi-temporal MODIS and Landsat reflectance fusion method based on super-resolution reconstruction. Yaogan Xuebao-J. Remote Sens. 17(3), 590–608 (2013)

    Google Scholar 

  40. Zhao, Z., et al.: Review of remotely sensed time series data for change detection. Yaogan Xuebao/J. Remote Sens. 20(5), 1110–1125 (2016). https://doi.org/10.11834/jrs.20166170

    Article  Google Scholar 

  41. Zhou, Y., Lian, J., Han, M.: Remote sensing image transfer classification based on weighted extreme learning machine. IEEE Geosci. Remote Sens. Lett. 13(10), 1405–1409 (2016). https://doi.org/10.1109/LGRS.2016.2568263

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guojin He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, G. et al. (2019). Information Services of Big Remote Sensing Data. In: Li, J., Meng, X., Zhang, Y., Cui, W., Du, Z. (eds) Big Scientific Data Management. BigSDM 2018. Lecture Notes in Computer Science(), vol 11473. Springer, Cham. https://doi.org/10.1007/978-3-030-28061-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28061-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28060-4

  • Online ISBN: 978-3-030-28061-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics