Skip to main content

Extracting Landscape Features from Single Particle Trajectories

  • Conference paper
  • First Online:
Hybrid Systems Biology (HSB 2019)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 11705))

Included in the following conference series:

Abstract

The predictive power of dynamical models of cell signaling is often limited due to the difficulty in estimating the relevant kinetic parameters. Super-resolution microscopy techniques can provide in vivo trajectories of individual receptors, and serve as a direct source of quantitative information on molecular processes. Single particle tracking (SPT) has been used to extract reaction kinetic parameters such as dimer lifetimes and diffusion rates. However, signaling models aim to characterize kinetics relevant to the entire cell while SPT follows individual molecules in a small fraction of the cell. The gap in resolution can be bridged with spatial simulations of molecular movement, validated at SPT resolution, which are used to infer effective kinetics on larger spatial scales.

Our focus is on processes that involve receptors bound to the cell membrane. Extrapolating kinetics observed at SPT resolution must take into account the spatial structures that interferes with the free movement of molecules of interest. This is reflected in patterns of movement that deviate from standard Brownian motion. Ideally, simulations at SPT resolution should reproduce observed movement patterns, which reflect the properties and transformation of the molecules as well as those of the underlying cell membrane.

We first sought to identify general signatures of the underlying membrane landscape in jump size distributions extracted from SPT data. We found that Brownian motion simulations in the presence of a pattern of obstacles could provide a good qualitative match. The next step is to infer the underlying landscape structures. We discuss our method used to identify such structures from long single particle trajectories that are obtained at low density. Our approach is based on deviations from ideal Brownian motion and identifies likely regions that trap receptors. We discuss the details of the method in its current form and outline a framework aimed at refinement using simulated motion in a known landscape.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Brownian motion, as well as confinement to the cell membrane, result from interaction with much smaller molecules such as the lipids that form the membrane. We do not explicitly address this level of interaction.

  2. 2.

    not to be confused with the distribution of the magnitude of the displacement \(f(\varDelta r)\propto (\varDelta r) \exp (-(\varDelta r)/ 4 D \tau )\).

  3. 3.

    ... of comparable size, \(~10\,\mathrm {nm}\).

  4. 4.

    This implies that two points will be connected if there is a connecting path \(\{A=M_{0}, M_{1},\cdots M_{q}=B\}\) through any number of other points and no edge longer than L, \(|\varvec{r}_{M_j} - \varvec{r}_{M_{j+1}}|<L\).

  5. 5.

    This is not completely unique, but will always provide a closed polygonal line.

References

  1. Alberts, B., Bray, D., Lewis, J., Raff, M., Robert, K., Watson, J.D.: Molecular Biology of the Cell, 5th edn. Garland Publishing Inc. (2007)

    Google Scholar 

  2. Andrews, N.L., et al.: Actin restricts Fc\(\varepsilon \)RI diffusion and facilitates antigen-induced receptors immobilization. Nat. Cell Biol. 10(8), 955–963 (2008). https://doi.org/10.1038/ncb1755

    Google Scholar 

  3. Azuaje, F.: Computational models for predicting drug responses in cancer research. Brief. Bioinf. 18(5), 820–829 (2017)

    Google Scholar 

  4. Barua, D., Hlavacek, W.S., Lipniacki, T.: A computational model for early events in b cell antigen receptor signaling: analysis of the roles of Lyn and Fyn. J. Immunol. 189(2), 646–658 (2012)

    Article  Google Scholar 

  5. Casalini, P., Iorio, M.V., Galmozzi, E., Menard, S.: Role of HER receptors family in development and differentiation. J. Cell. Physiol. 200, 343–350 (2004)

    Article  Google Scholar 

  6. Chen, K.C., Csikasz-Nagy, A., Gyorffy, B., Val, J., Novák, B., Tyson, J.J.: Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 11(1), 369–391 (2000)

    Article  Google Scholar 

  7. Craciun, G., Tang, Y., Feinberg, M.: Understanding bistability in complex enzyme-driven reaction networks. Proc. Nat. Acad. Sci. U.S.A. 103, 8697–8702 (2006)

    Article  MATH  Google Scholar 

  8. El Beheiry, M., et al.: A primer on the bayesian approach to high-density single-molecule trajectories analysis. Biophys. J. 110, 1209–1215 (2016)

    Article  Google Scholar 

  9. Erasmus, F.M., et al.: Dynamic pre-BCR homodimers fine-tune autonomous survival signals in B cell precursor acute lymphoblastic leukemia. Sci. Signal. 9, ra116 (2016)

    Article  Google Scholar 

  10. Erickson, K.E., Rukhlenko, O.S., Posner, R.G., Hlavacek, W.S., Kholodenko, B.N.: New insights into RAS biology reinvigorate interest in mathematical modeling of RAS signaling. Semin. Cancer Biol. 54, 162–173 (2019)

    Article  Google Scholar 

  11. Espinoza, F.A., et al.: Insights into cell membrane microdomain organization from live cell single particle tracking of the IgE high affinity receptor Fc\(\varepsilon \)RI of mast cells. Bull. Math. Biol. 74, 1857–1911 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Gounni, A.S.: The high-affinity IgE receptor (Fc\(\varepsilon \)RI): a critical regulator of airway smooth muscle cells? Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L312–321 (2006)

    Google Scholar 

  13. Güven, E., Wester, M.J., Wilson, B.S., Edwards, J.S., Halász, Á.M.: Characterization of the experimentally observed clustering of VEGF receptors. In: Češka, M., Šafránek, D. (eds.) CMSB 2018. LNCS, vol. 11095, pp. 75–92. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99429-1_5

    Chapter  Google Scholar 

  14. Halász, Á.M., Pryor, M.M.C., Wilson, B.S., Edwards, J.S.: Spatiotemporal modeling of membrane receptors. In: Graw, F., Matthäus, F., Pahle, J. (eds.) Modeling Cellular Systems. CMCS, vol. 11, pp. 1–37. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-45833-5_1

    Chapter  Google Scholar 

  15. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci. Signal. 344, re6 (2006)

    Google Scholar 

  16. Jin, S., Verkman, A.S.: Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena. J. Phys. Chem. B 111(14), 3625–3632 (2007)

    Article  Google Scholar 

  17. van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. North-Holland, Amsterdam (1992)

    MATH  Google Scholar 

  18. Kerketta, R., Halasz, A., Steinkamp, M.P., Wilson, B.S., Edwards, J.: Effect of spatial inhomogeneities on the membrane surface on receptor dimerization and signal initiation. Front. Cell Dev. Biol. 4, 81 (2016)

    Article  Google Scholar 

  19. Kholodenko, B.N., Demin, O.V., Moehren, G., Hoek, J.B.: Quantification of short term signaling by the epidermal growth factor receptor. J. Biol. Chem. 274(42), 30169–30181 (1999)

    Article  Google Scholar 

  20. Kitaura, J., et al.: Evidence that IgE molecules mediate a spectrum of effects on mast cell survival and activation via aggregation of the Fc\(\varepsilon \)RI. Proc. Natl. Acad. Sci. U.S.A 100, 12911–12916 (2003)

    Google Scholar 

  21. Kolch, W., Halasz, M., Granovskaya, M., Kholodenko, B.N.: The dynamic control of signal transduction networks in cancer cells. Nat. Rev. Cancer 15(9), 515–27 (2015)

    Article  Google Scholar 

  22. Kusumi, A., et al.: Paradigm shift of the plasma membrane concept from the two dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005)

    Article  Google Scholar 

  23. Lemmon, M.A., Schlessinger, J.: Cell signaling by receptor tyrosine kinases. Cell 141, 1117–1134 (2010)

    Article  Google Scholar 

  24. Li, H., Cao, Y., Petzold, L.R., Gillespie, D.T.: Algorithms and software for stochastic simulation of biochemical reacting systems. Biotechnol. Prog. 24, 56–61 (2008)

    Article  Google Scholar 

  25. Lidke, D.S., Low-Nam, S.T., Cutler, P.J., Lidke, K.A.: Determining Fc\(\varepsilon \)RI diffusional dynamics via single quantum dot tracking. Methods Mol. Biol. 748, 121–132 (2011)

    Google Scholar 

  26. Low-Nam, S.T., et al.: ErbB1 dimerization is promoted by domain co-confinement and stabilized by ligand binding. Nat. Struct. Mol. Biol. 18, 1244–1249 (2011)

    Article  Google Scholar 

  27. Masson, J.B., et al.: Mapping the energy and diffusion landscapes of membrane proteins at the cell surface using high-density single-molecule imaging and bayesian inference: application to the multiscale dynamics of glycine receptors in the neuronal membrane. Biophys. J. 106, 74–83 (2014)

    Article  Google Scholar 

  28. Nguyen, L.K., Kolch, W., Kholodenko, B.N.: When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling. Cell Commun. Signal. 11, 52 (2013)

    Article  Google Scholar 

  29. Ober, R.J., Ram, S., Ward, E.S.: Localization accuracy in single-molecule microscopy. Biophys. J. 86(2), 1185 (2004)

    Article  Google Scholar 

  30. Pezzarossa, A., Fenz, S., Schmidt, T.: Probing structure and dynamics of the cell membrane with single fluorescent proteins. In: Jung, G. (ed.) Fluorescent Proteins II. Springer Series on Fluorescence (Methods and Applications), vol. 12, pp. 185–212. Springer, Heidelberg (2011). https://doi.org/10.1007/4243_2011_24

    Chapter  Google Scholar 

  31. Pryor, M.M., et al.: Orchestration of ErbB3 signaling through heterointeractions and homointeractions. Mol. Biol. Cell 26(22), 4109–4123 (2015)

    Article  Google Scholar 

  32. Pryor, M.M., Low-Nam, S.T., Halász, A.M., Lidke, D.S., Wilson, B.S., Edwards, J.S.: Dynamic transition states of ErbB1 phosphorylation predicted by spatial-stochastic modeling. Biophys. J. 105(6), 1533–1543 (2013)

    Article  Google Scholar 

  33. Rajani, V., Carrero, G., Golan, D.E., de Vries, G., Cairo, C.W.: Analysis of molecular diffusion by first-passage time variance identifies the size of confinement zones. Biophys. J. 100(6), 1463–1472 (2011)

    Article  Google Scholar 

  34. Schlessinger, J.: Ligand-induced, receptor-mediated dimerization and activation of EGF receptor. Cell 110, 669–672 (2002)

    Article  Google Scholar 

  35. Schmidt, T., Schütz, G.J.: Single-molecule analysis of biomembranes. In: Hinterdorfer, P., Oijen, A. (eds.) Handbook of Single-Molecule Biophysics, pp. 19–42. Springer, New York (2009). https://doi.org/10.1007/978-0-387-76497-9_2

    Chapter  Google Scholar 

  36. Shinar, G., Alon, U., Feinberg, M.: Sensitivity and robustness in chemical reaction networks. SIAM J. Appl. Math. 69(4), 977–998 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sontag, E.: Monotone and near-monotone biochemical networks. Syst. Synth. Biol. 1, 59–87 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ádám M. Halász .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Halász, Á.M., Clark, B.L., Maler, O., Edwards, J.S. (2019). Extracting Landscape Features from Single Particle Trajectories. In: Češka, M., Paoletti, N. (eds) Hybrid Systems Biology. HSB 2019. Lecture Notes in Computer Science(), vol 11705. Springer, Cham. https://doi.org/10.1007/978-3-030-28042-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28042-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28041-3

  • Online ISBN: 978-3-030-28042-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics