Skip to main content

Part of the book series: Interdisciplinary Applied Mathematics ((IAM,volume 51))

  • 422 Accesses

Abstract

This chapter is divided into seven main sections. In Sect. 1.1, a brief review of the theories of multi-porosity materials is presented. In Sect. 1.2, the short history of the potential method is introduced. In Sect. 1.3, the basic notations are given. These notations are used throughout this work. In Sects. 1.4 and 1.5, the basic equations of thermoelasticity and elasticity of quadruple porosity solids are presented, respectively. In Sect. 1.6, these equations are rewritten in the matrix form. Finally, in Sect. 1.7, the stress operators of the considered theories are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdassah, D., Ershaghi, I.: Triple-porosity systems for representing naturally fractured Reservoirs. SPE Form Eval. (April) 113–127. SPE-13409-PA (1986)

    Google Scholar 

  2. Aguilera, R.: Naturally Fractured Reservoirs, 2nd edn. PennWell Books, Tulsa (1995)

    Google Scholar 

  3. Aguilera, R.F., Aguilera, R.: A triple - porosity model for petrophysical analysis of naturally fractured reservoirs. Petrophysics 45, 157–166 (2004)

    Google Scholar 

  4. Aguilera, R., Lopez, B.: Evaluation of quintuple porosity in shale petroleum reservoirs. SPE Eastern Regional Meeting, 20–22 August, Pittsburgh. SPE-165681-MS, 28pp. (2013). https://doi.org/10.2118/165681-MS

  5. Aifantis, E.C.: Introducing a multi-porous media. Dev. Mech. 9, 209–211 (1977)

    Google Scholar 

  6. Aifantis, E.C.: Further comments on the problem of heat extraction from hot dry rocks. Mech. Res. Commun. 7, 219–226 (1980)

    Article  Google Scholar 

  7. Aifantis, E.C., Beskos, D.E.: Heat extraction from hot dry rocks. Mech. Res. Commun. 7, 165–170 (1980)

    Article  MathSciNet  Google Scholar 

  8. Aouadi, M.: A theory of thermoelastic diffusion materials with voids. Z. Angew. Math. Phys. 61, 357–379 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Aouadi, M.: Uniqueness and existence theorems in thermoelasticity with voids without energy dissipation. J. Franklin Inst. 349, 128–139 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  10. Aouadi, M.: Stability in thermoelastic diffusion theory with voids. Appl. Anal. 91, 121–139 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21, 823–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Arusoaie, A.: Spatial and temporal behavior in the theory of thermoelasticity for solids with double porosity. J. Therm. Stresses 41, 500–521 (2018)

    Article  Google Scholar 

  13. Ba, J., Carcione, J.M., Nie, J.X.: Biot-Rayleigh theory of wave propagation in double-porosity media. J. Geophys. Res. 116, B06202 (2011). https://doi.org/10.1029/2010JB008185

    Article  Google Scholar 

  14. Bai, M., Roegiers, J.C.: Fluid flow and heat flow in deformable fractured porous media. Int. J. Eng. Sci. 32, 1615–1633 (1994)

    Article  MATH  Google Scholar 

  15. Bai, M., Roegiers, J.C.: Triple-porosity analysis of solute transport. J. Cantam. Hydrol. 28, 189–211 (1997)

    Google Scholar 

  16. Bai, M., Elsworth, D., Roegiers, J.C.: Multiporosity/multipermeability approach to the simulation of naturally fractured reservoirs. Water Resour. Res. 29, 1621–1633 (1993)

    Article  Google Scholar 

  17. Barenblatt, G.I., Zheltov, Y.P.: Fundamental equations of filtration of homogeneous liquids in fissured rock. Sov. Phys. Dokl. 5, 522–525 (1960)

    MATH  Google Scholar 

  18. Barenblatt, G.I., Zheltov, Y.P., Kochina, I.N.: Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks (strata). J. Appl. Math. Mech. 24, 1286–1303 (1960)

    Article  MATH  Google Scholar 

  19. Basheleishvili, M., Bitsadze, L.: Explicit solutions of the boundary value problems of the theory of consolidation with double porosity for the half-plane. Georgian Math. J. 19, 41–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bazarra, N., Fernández, J.R., Leseduarte, M.C., Magaña, A., Quintanilla, R.: On the thermoelasticity with two porosities: asymptotic behaviour. Math. Mech. Solids (2018, in press). 24, 2713–2725 (2019)

    Google Scholar 

  21. Bear, J.: Modeling Phenomena of Flow and Transport in Porous Media. Springer, Basel (2018)

    Book  MATH  Google Scholar 

  22. Berryman, J.G., Wang, H.F.: The elastic coefficients of double - porosity models for fluid transport in jointed rock. J. Geophys. Res. B 100, 24611–24627 (1995)

    Article  Google Scholar 

  23. Berryman, J.G., Wang, H.F.: Elastic wave propagation and attenuation in a double-porosity dual-permeability medium. Int. J. Rock Mech. Min. Sci. 37, 63–78 (2000)

    Article  Google Scholar 

  24. Beskos, D.E., Aifantis, E.C.: On the theory of consolidation with double porosity - II. Int. J. Eng. Sci. 24, 1697–1716 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  25. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  26. Biot, M.A.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  27. Biot, M.A.: Variational Lagrangian-thermodynamics of nonisothermal finite strain mechanics of porous solids and thermomolecular diffusion. Int. J. Solids Struct. 13, 579–597 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  28. Bitsadze, L., Tsagareli, I.: Solutions of BVPs in the fully coupled theory of elasticity for the space with double porosity and spherical cavity. Math. Methods Appl. Sci. 39, 2136–2145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Bitsadze, L., Tsagareli, I.: The solution of the Dirichlet BVP in the fully coupled theory of elasticity for spherical layer with double porosity. Meccanica 51, 1457–1463 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bluhm, J., de Boer, R.: The volume fraction concept in the porous media theory. ZAMM J. Appl. Math. Mech. 77, 563–577 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18, 1129–1148 (1980)

    Article  MATH  Google Scholar 

  32. Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20, 697–735 (1982)

    Article  MATH  Google Scholar 

  33. Burchuladze, T.V., Gegelia, T.G.: The Development of the Potential Methods in the Elasticity Theory (Russian). Metsniereba, Tbilisi (1985)

    Google Scholar 

  34. Burchuladze, T., Svanadze, M.: Potential method in the linear theory of binary mixtures for thermoelastic solids. J. Therm. Stresses 23, 601–626 (2000)

    Article  MathSciNet  Google Scholar 

  35. Casas, P.S., Quintanilla, R.: Exponential decay in one-dimensional porous-thermo-elasticity. Mech. Res. Commun. 32, 652–658 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. Cheng, A.H.D.: Poroelasticity. Springer, Basel (2016)

    Book  MATH  Google Scholar 

  37. Cheng, A.H.D., Cheng, D.T.: Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 29, 268–302 (2005)

    Article  MATH  Google Scholar 

  38. Chirita, S.: Rayleigh waves on an exponentially graded poroelastic half space. J. Elast. 110, 185–199 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chirita, S., Ghiba, I.D.: Strong ellipticity and progressive waves in elastic materials with voids. Proc. Roy. Soc. Lond. A 466, 439–458 (2010)

    Article  MATH  Google Scholar 

  40. Chirita, S., Scalia, A.: On the spatial and temporal behavior in linear thermoelasticity of materials with voids. J. Therm. Stresses 24, 433–455 (2001)

    Article  MathSciNet  Google Scholar 

  41. Chirita, S., Ciarletta, M., Straughan, B.: Structural stability in porous elasticity. Proc. Roy. Soc. Lond. A 462, 2593–2605 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  42. Ciarletta, M., IeÅŸan, D.: Non-Classical Elastic Solids. Longman Scientific and Technical. Wiley, New York (1993)

    Google Scholar 

  43. Ciarletta, M., Chirita, S., Passarella, F.: Some results on the spatial behaviour in linear porous elasticity. Arch. Mech. 57, 43–65 (2005)

    MathSciNet  MATH  Google Scholar 

  44. Ciarletta, M., Straughan, B.: Thermo-poroacoustic acceleration waves in elastic materials with voids. J. Math. Anal. Appl. 333, 142–150 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ciarletta, M., Scalia, A., Svanadze, M.: Fundamental solution in the theory of micropolar thermoelasticity for materials with voids. J. Therm. Stresses 30, 213–229 (2007)

    Article  MathSciNet  Google Scholar 

  46. Ciarletta, M., Svanadze, M., Buonano, L.: Plane waves and vibrations in the micropolar thermoelastic materials with voids. Eur. J. Mech. A Solids 28, 897–903 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ciarletta, M., Passarella, F., Svanadze, M.: Plane waves and uniqueness theorems in the coupled linear theory of elasticity for solids with double porosity. J. Elast. 114, 55–68 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  48. Ciarletta, M., Straughan, B., Tibullo, V.: Acceleration waves in a nonlinear Biot theory of porous media. Int. J. Non-Linear Mech. 103, 23–26 (2018)

    Article  Google Scholar 

  49. Coussy, O.: Poromechanics. Wiley, Chichester (2004)

    MATH  Google Scholar 

  50. Coussy, O.: Mechanics and Physics of Porous Solids. Wiley, Chichester (2010)

    Book  Google Scholar 

  51. Cowin, S.C.: The stresses around a hole in a linear elastic material with voids. Quart. J. Mech. Appl. Math. 37, 441–465 (1984)

    Article  MATH  Google Scholar 

  52. Cowin, S.C.: Bone poroelasticity. J. Biomech. 32, 217–238 (1999)

    Article  Google Scholar 

  53. Cowin, S.C. (ed.): Bone Mechanics Handbook. Informa Healthcare USA, New York (2008)

    Google Scholar 

  54. Cowin, S.C., Nunziato, J.W.: Linear elastic materials with voids. J. Elast. 13, 125–147 (1983)

    Article  MATH  Google Scholar 

  55. Cowin, S.C., Puri, P.: The classical pressure vessel problems for linear elastic materials with voids. J. Elast. 13, 157–163 (1983)

    Article  MATH  Google Scholar 

  56. Cushman, J.H.: The Physics of Fluids in Hierarchical Porous Media: Angstroms to Miles. Springer, Dordrecht (1997)

    Book  Google Scholar 

  57. Dai, W.Z., Kuang, Z.B.: Love waves in double porosity media. J. Sound Vib. 296, 1000–1012 (2006)

    Article  Google Scholar 

  58. Dai, Z.J., Kuang, Z.B., Zhao, S.X.: Rayleigh waves in a double porosity half-space. J. Sound Vib. 298, 319–332 (2006)

    Article  Google Scholar 

  59. Dai, Z.J., Kuang, Z.B., Zhao, S.X.: Reflection and transmission of elastic waves from the interface of a fluid-saturated porous solid and a double porosity solid. Transp. Porous Media 65, 237–264 (2006)

    Article  MathSciNet  Google Scholar 

  60. D’Apice, C., Chirita, S.: Plane harmonic waves in the theory of thermoviscoelastic materials with voids. J. Therm. Stresses 39, 142–155 (2016)

    Article  Google Scholar 

  61. Das, M.K., Mukherjee, P.P., Muralidhar, K.: Modeling Transport Phenomena in Porous Media with Applications. Springer, Cham (2018)

    Book  MATH  Google Scholar 

  62. de Boer, R.: Theory of Porous Media: Highlights in the Historical Development and Current State. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  63. de Boer, R.: Contemporary progress in porous media theory. Appl. Mech. Rev. 53, 323–370 (2000)

    Article  Google Scholar 

  64. de Boer, R.: Trends in Continuum Mechanics of Porous Media. Springer, Dordrecht (2005)

    Book  MATH  Google Scholar 

  65. de Boer, R., Svanadze, M.: Fundamental solution of the system of equations of steady oscillations in the theory of fluid-saturated porous media. Transp. Porous Media 56, 39–50 (2004)

    Article  MathSciNet  Google Scholar 

  66. De Cicco, S., Diaco, M.: A theory of thermoelastic materials with voids without energy dissipation. J. Therm. Stresses 25, 493–503 (2002)

    Article  MathSciNet  Google Scholar 

  67. Dhaliwal, R.S., Wang, J.: A heat-flux dependent theory of thermoelasticity with voids. Acta Mech. 110, 33–39 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  68. Dormieux, L., Kondo, D., Ulm, F.-J.: Microporomechanics. Wiley, Chichester (2006)

    Book  MATH  Google Scholar 

  69. Florea, O.: Spatial behavior in thermoelastodynamics with double porosity structure. Int. J. Appl. Mech. 9, 1750097, 14pp. (2017). https://doi.org/10.1142/S1758825117500971

  70. Florea, O.A.: Harmonic vibrations in thermoelastic dynamics with double porosity structure. Math. Mech. Solids (2018). 24, 2410–2424 (2019)

    Google Scholar 

  71. Franchi, F., Lazzari, B., Nibbi, R., Straughan, B.: Uniqueness and decay in local thermal non-equilibrium double porosity thermoelasticity. Math. Methods Appl. Sci. 41, 6763–6771 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  72. Fredholm, I.: Sur une classe d’équations fonctionelles. Acta Math. 27, 365–390 (1903)

    Article  MathSciNet  MATH  Google Scholar 

  73. Gegelia, T., Jentsch, L.: Potential methods in continuum mechanics. Georgian Math. J. 1, 599–640 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  74. Gelet, R., Loret, B., Khalili, N.: Borehole stability analysis in a thermoporoelastic dual-porosity medium. Int. J. Rock Mech. Min. Sci. 50, 65–76 (2012)

    Article  Google Scholar 

  75. Gentile, M., Straughan, B.: Acceleration waves in nonlinear double porosity elasticity. Int. J. Eng. Sci. 73, 10–16 (2013)

    Article  MATH  Google Scholar 

  76. Green, G.: An Essay on the Application of Mathematical Analysis to the Theories of Electricity and Magnetism. Nottingham (1828)

    Google Scholar 

  77. Günther, N.M.: Potential Theory and its Applications to Basic Problems of Mathematical Physics. Ungar, New York (1967)

    Google Scholar 

  78. He, J., Teng, W., Xu, J., Jiang, R., Sun, J.: A quadruple-porosity model for shale gas reservoirs with multiple migration mechanisms. J. Nat. Gas Sci. Eng. 33, 918–933 (2016)

    Article  Google Scholar 

  79. Holzapfel, G.A., Ogden, R.W. (eds): Biomechanics: Trends in Modeling and Simulation. Springer, Basel (2017)

    MATH  Google Scholar 

  80. Hsiao, G.C., Wendland, W.L.: Boundary Integral Equations. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  81. Ichikawa, Y., Selvadurai, A.P.S.: Transport Phenomena in Porous Media: Aspects of Micro/Macro Behaviour. Springer, Berlin (2012)

    Book  Google Scholar 

  82. Ieşan, D.: Shock waves in micropolar elastic materials with voids. An. St. Univ. Al. I. Cuza Iasi. 81, 177–186 (1985)

    MathSciNet  MATH  Google Scholar 

  83. Ieşan, D.: Some theorems in the theory of elastic materials with voids. J. Elast. 15, 215–224 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  84. Ieşan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60, 67–89 (1986)

    Article  Google Scholar 

  85. IeÅŸan, D.: Thermoelastic Models of Continua. Springer, Dordrecht (2004)

    Book  MATH  Google Scholar 

  86. IeÅŸan, D.: Classical and Generalized Models of Elastic Rods. Chapman and Hall/CRC, New York (2008)

    Book  MATH  Google Scholar 

  87. Ieşan, D.: On a theory of thermoviscoelastic materials with voids. J. Elast. 104, 369–384 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  88. Ieşan, D.: Method of potentials in elastostatics of solids with double porosity. Int. J. Eng. Sci. 88, 118–127 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  89. Ieşan, D.: On the prestressed thermoelastic porous materials. J. Therm. Stresses 41, 1212–1224 (2018)

    Article  Google Scholar 

  90. Ieşan, D., Quintanilla, R.: Non-linear deformations of porous elastic solids. Int. J. Non-Linear Mech. 49, 57–65 (2013)

    Article  Google Scholar 

  91. Ieşan, D., Quintanilla, R.: On a theory of thermoelastic materials with a double porosity structure. J. Therm. Stresses 37, 1017–1036 (2014)

    Article  Google Scholar 

  92. Janjgava, R.: Elastic equilibrium of porous Cosserat media with double porosity. Adv. Math. Phys. 2016, 4792148, 9pp. (2016). https://doi.org/10.1155/2016/4792148

  93. Kansal, T.: Generalized theory of thermoelastic diffusion with double porosity. Arch. Mech. 70, 241–268 (2018)

    MathSciNet  MATH  Google Scholar 

  94. Kansal, T.: Fundamental solution of the system of equations of pseudo oscillations in the theory of thermoelastic diffusion materials with double porosity. Multidisc. Model. Mater. Struct. 20pp. (2018). https://doi.org/10.1108/MMMS-01-2018-0006

  95. Kellogg, O.D.: Foundations of Potential Theory. Springer, Berlin (1929)

    Book  MATH  Google Scholar 

  96. Khaled, M.Y., Beskos, D.E., Aifantis, E.C.: On the theory of consolidation with double porosity - III: a finite element formulation. Nimer. Anal. Meth. Geomech. 8, 101–123 (1984)

    Article  MATH  Google Scholar 

  97. Khalili, N.: Coupling effects in double porosity media with deformable matrix. Geophys. Res. Lett. 30, 22 (2003). https://doi.org/10.1029/2003GL018544

    Google Scholar 

  98. Khalili, N., Habte, M.A., Zargarbashi, S.: A fully coupled flow deformation model for cyclic analysis of unsaturated soils including hydraulic and mechanical hysteresis. Comput. Geotech. 35, 872–889 (2008)

    Article  Google Scholar 

  99. Khalili, N., Selvadurai, A.P.S.: A fully coupled constitutive model for thermo-hydro-mechanical analysis in elastic media with double porosity. Geophys. Res. Lett. 30(24), 2268 (2003). https://doi.org/10.1029/2003GL018838

    Article  Google Scholar 

  100. Kumar, R., Vohra, R.: State space approach to plane deformation in elastic material with double porosity. Mater. Phys. Mech. 24, 9–17 (2015)

    Google Scholar 

  101. Kumar, R., Vohra, R.: A problem of spherical cavity in an infinite generalized thermoelastic medium with double porosity subjected to moving heat source. Med. J. Model. Simul. 6, 67–81 (2016)

    Google Scholar 

  102. Kumar, R.M., Vohra, R.: Elastodynamic problem for an infinite body having a spherical cavity in the theory of thermoelasticity with double porosity. Mech. Mech. Eng. 21, 267–289 (2017)

    Google Scholar 

  103. Kumar, R.M., Vohra, R.: Vibration analysis of thermoelastic double porous microbeam subjected to laser pulse. Mech. Adv. Mater. Struct. 26, 471–479 (2017). https://doi.org/10.1080/15376494.2017.1341578

    Article  Google Scholar 

  104. Kumar, R., Vohra, R., Gorla, M.G.: Some considerations of fundamental solution in micropolar thermoelastic materials with double porosity. Arch. Mech. 68, 263–284 (2016)

    MathSciNet  MATH  Google Scholar 

  105. Kumar, R., Vohra, R., Gorla, M.G.: Thermomechanical response in thermoelastic medium with double porosity. J. Solid Mech. 9, 24–38 (2017)

    Google Scholar 

  106. Kumar, R., Vohra, R., Gorla, M.G.: Variational principle and plane wave propagation in thermoelastic medium with double porosity under Lord-Shulman theory. J. Solid Mech. 9, 423–433 (2017)

    Google Scholar 

  107. Kupradze, V.D.: The existence and uniqueness theorems in the diffraction theory (Russian). Doklady AN SSSR 1, 235–240 (1934)

    MATH  Google Scholar 

  108. Kupradze, V.D.: Solution of boundary value problems of Helmholtz equations in extraordinary cases (Russian). Doklady AN SSSR 1, 521–526 (1934)

    Google Scholar 

  109. Kupradze, V.D.: Boundary Value Problems of the Oscillation Theory and Integral Equations. M.-L., State Publishing House of technical and theoretical Literature (1950) (Russian). German translation: Kupradze, V.D.: Randwertaufgaben der Schwingungstheorie und Integralgleichongen. Veb Deutscher verlag der Wissenschaften, Berlin (1956)

    Google Scholar 

  110. Kupradze, V.D.: Dynamical problems in elasticity. In: Sneddon, I.N., Hill, R. (eds.) Progress in Solid Mechanics, vol. III, pp. 1–259. North Holland, Amsterdam (1963)

    Google Scholar 

  111. Kupradze, V.D.: Potential Methods in the Theory of Elasticity. Israel Program for Scientific Translations, Jerusalem (1965)

    Google Scholar 

  112. Kupradze, V.D., Gegelia, T.G., Basheleishvili, M.O., Burchuladze, T.V.: Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam (1979)

    Google Scholar 

  113. Liu, C., Abousleiman, Y.N.: N-porosity and N-permeability generalized wellbore stability analytical solutions and applications: 50th US Rock Mechanics/Geomechanics Symposium, ARMA, 16-417, 9pp. (2016)

    Google Scholar 

  114. Liu, C.Q.: Exact solution for the compressible flow equations through a medium with triple-porosity. Appl. Math. Mech. 2, 457–462 (1981)

    Article  MATH  Google Scholar 

  115. Liu, J.C., Bodvarsson, G.S., Wu, Y.S.: Analysis of pressure behaviour in fractured lithophysical reservoirs. J. Cantam. Hydrol. 62–63, 189–211 (2003)

    Article  Google Scholar 

  116. Liu, Z.: Multiphysics in Porous Materials. Springer, Basel (2018)

    Book  Google Scholar 

  117. Lopez, B., Aguilera, R.: Physics-based approach for shale gas numerical simulation: quintuple porosity and gas diffusion from solid kerogen. In: Presented at the SPE Annual Technical Conference and Exhibition, Houston, 28–30 September. SPE-175115-MS, 32pp. (2015). https://doi.org/10.2118/175115-MS

  118. Lopez, B., Aguilera, R.: Petrophysical quantification of multiple porosities in shale-petroleum reservoirs with the use of modified pickett plots. SPE Reserv. Eval. Eng. SPE-171638-PA, 15pp. (2017). https://doi.org/10.2118/171638-PA

  119. Magaña, A., Quintanilla, R.: On the time decay of solutions in one-dimensional theories of porous materials. Int. J. Solids Struct. 43, 3414–3427 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  120. Marin, M.: Some basic theorems in elastostatics of micropolar materials with voids. J. Comput. Appl. Math. 70, 115–126 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  121. Marin, M., Nicaise, S.: Existence and stability results for thermoelastic dipolar bodies with double porosity. Cont. Mech. Thermodynam. 28, 1645–1657 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  122. Marin, M., Vlase, S., Paun, M.: Considerations on double porosity structure for micropolar bodies. AIP Adv. 5, 037113, 10pp. (2015). https://doi.org/10.1063/1.4914912

  123. Masters, I., Pao, W.K.S., Lewis, R.W.: Coupling temperature to a double - porosity model of deformable porous media. Int. J. Numer. Methods Eng. 49, 421–438 (2000)

    Article  MATH  Google Scholar 

  124. Mehrabian, A.: The poroelastic constants of multiple-porosity solids. Int. J. Eng. Sci. 132, 97–104 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  125. Mehrabian, A., Abousleiman, Y.N.: Generalized Biot’s theory and Mandel’s problem of multiple-porosity and multiple-permeability poroelasticity. J. Geophys. Res. Solid Earth. 119, 2745–2763 (2014)

    Article  Google Scholar 

  126. Mehrabian, A., Abousleiman, Y.N.: Multiple-porosity and multiple-permeability poroelasticity: theory and benchmark analytical solution. In: Vandamme, M., Dangla, P., Pereira, J.M., Siavash Ghabezloo, S. (eds.) Poromechanics VI: Proceedings of the Sixth Biot Conference on Poromechanics, pp. 262–271 (2017). https://doi.org/10.1061/9780784480779.032

  127. Mehrabian, A., Abousleiman, Y.N.: Theory and analytical solution to Cryer’s problem of N-porosity and N-permeability poroelasticity. J. Mech. Phys. Solids 118, 218–227 (2018)

    Article  MathSciNet  Google Scholar 

  128. Mikhlin, S.G.: Multidimensional Singular Integrals and Integral Equations. Pergamon Press, Oxford (1965)

    MATH  Google Scholar 

  129. Moutsopoulos, K.N., Konstantinidis, A.A., Meladiotis, I., Tzimopoulos, C.D., Aifantis, E.C.: Hydraulic behavior and contaminant transport in multiple porosity media. Transp. Porous Media 42, 265–292 (2001)

    Article  Google Scholar 

  130. Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  131. Muskhelishvili, N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. Noordhoff, Groningen (1953)

    MATH  Google Scholar 

  132. Nield, D.A., Bejan, A.: Convection in Porous Media, 5th edn. Springer, Basel (2017)

    Book  MATH  Google Scholar 

  133. Nikolaevskij, V.N.: Mechanics of Porous and Fractured Media. World Scientific, Singapore (1990)

    Book  MATH  Google Scholar 

  134. Nunziato, J.W., Cowin, S.C.: A nonlinear theory of elastic materials with voids. Arch. Rat. Mech. Anal. 72, 175–201 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  135. Passarella, F.: Some results in micropolar thermoelasticity. Mech. Res. Commun. 23, 349–357 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  136. Passarella, F., Tibullo, V., Zampoli, V.: On the heat-flux dependent thermoelasticity for micropolar porous media. J. Therm. Stresses 34, 778–794 (2011)

    Article  MATH  Google Scholar 

  137. Patwardhan, S.D., Famoori, F., Govindarajan, S.K.: Quad-porosity shale systems - a review. World J. Eng. 13, 529–539 (2016)

    Article  Google Scholar 

  138. Pride, S.R., Berryman, J.G.: Linear dynamics of double-porosity dual-permeability materials I. Governing equations and acoustic attenuation. Phys. Rev. E 68, 036603 (2003)

    Google Scholar 

  139. Puri, P., Cowin, S.C.: Plane waves in linear elastic material with voids. J. Elast. 15, 167–183 (1985)

    Article  MATH  Google Scholar 

  140. Quintanilla, R.: Slow decay for one-dimensional porous dissipation elasticity. Appl. Math. Lett. 16, 487–491 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  141. Radhika, B.P., Krishnamoorthy, A., Rao, A.U.: A review on consolidation theories and its application. Int. J. Geotech. Eng. 8pp. (2017). https://doi.org/10.1080/19386362.2017.1390899

  142. Rezaee, R.: Fundamentals of Gas Shale Reservoirs. Wiley, Hoboken (2015)

    Book  Google Scholar 

  143. Ricken, T., Bluhm, J.: Remodeling and growth of living tissue: a multiphase theory. Arch. Appl. Mech. 80, 453–465 (2010)

    Article  MATH  Google Scholar 

  144. Sang, G., Elsworth, D., Miao, X., Mao, X., Wang, J.: Numerical study of a stress dependent triple porosity model for shale gas reservoirs accommodating gas diffusion in kerogen. J. Nat. Gas Sci. Eng. 32, 423–438 (2016)

    Article  Google Scholar 

  145. Scalia, A.: Harmonic oscillations of a rigid punch on a porous elastic layer. J. Appl. Math. Mech. 73, 344–350 (2009)

    Article  MATH  Google Scholar 

  146. Scalia, A., Svanadze, M.: Potential method in the linear theory of thermoelasticity with microtemperatures. J. Therm. Stresses 32, 1024–1042 (2009)

    Article  Google Scholar 

  147. Scalia, A., Svanadze, M.: Basic theorems in thermoelastostatics of bodies with microtemperatures. In: Hetnarski, R.B.(ed), Encyclopedia of Thermal Stresses, 11 vols, pp. 355–365, 1st edn. Springer, Berlin (2014)

    Google Scholar 

  148. Scalia, A., Svanadze, M., Tracinà, R.: Basic theorems in the equilibrium theory of thermoelasticity with microtemperatures. J. Therm. Stresses 33, 721–753 (2010)

    Article  Google Scholar 

  149. Scarpetta, E.: On the fundamental solutions in micropolar elasticity with voids. Acta Mech. 82, 151–158 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  150. Scarpetta, E., Svanadze, M.: Uniqueness theorems in the quasi-static theory of thermoelasticity for solids with double porosity, J. Elast. 120, 67–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  151. Scarpetta, E., Svanadze, M., Zampoli, V.: Fundamental solutions in the theory of thermoelasticity for solids with double porosity. J. Therm. Stresses 37, 727–748 (2014)

    Article  Google Scholar 

  152. Selvadurai, A.P.S.: The analytical method in geomechanics. Appl. Mech. Rev. ASME 60, 87–106 (2007)

    Article  Google Scholar 

  153. Selvadurai, A.P.S., Suvorov, A.: Thermo-Poroelasticity and Geomechanics. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  154. Sheng, G., Su, Y., Wang, W., Liu, J., Lu, M., Zhang, Q., Ren, L.: A multiple porosity media model for multi-fractured horizontal wells in shale gas reservoirs. J. Nat. Gas Sci. Eng. 27, 1562–1573 (2015)

    Article  Google Scholar 

  155. Showalter, R.E., Visarraga, D.B.: Double-diffusion models from a highly heterogeneous medium. J. Math. Anal. Appl. 295, 191–210 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  156. Showalter, R.E., Walkington, N.J.: Micro-structure models of diffusion in fissured media. J. Math. Anal. Appl. 155, 1–20 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  157. Straughan, B.: Stability and Wave Motion in Porous Media. Springer, New York (2008)

    MATH  Google Scholar 

  158. Straughan, B.: Heat Waves. Applied Mathematical Sciences, vol. 177. Springer, New York (2011)

    Google Scholar 

  159. Straughan, B.: Stability and uniqueness in double porosity elasticity. Int. J. Eng. Sci. 65, 1–8 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  160. Straughan, B.: Convection with Local Thermal Non-Equilibrium and Microfluidic Effects. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  161. Straughan, B.: Modelling questions in multi-porosity elasticity. Meccanica 51, 2957–2966 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  162. Straughan, B.: Mathematical Aspects of Multi-Porosity Continua. Springer, Basel (2017)

    Book  MATH  Google Scholar 

  163. Straughan, B.: Solid mechanics–uniqueness and stability in triple porosity thermoelasticity. Rend. Lincei Mat. Appl. 28, 191–208 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  164. Su, B.-L., Sanchez, C., Yang, X.-Y. (eds): Hierarchically Structured Porous Materials: From Nanoscience to Catalysis, Separation, Optics, Energy, and Life Science. Wiley-VCH Verlag, Weinheim (2012)

    Google Scholar 

  165. Svanadze, M.: On existence of eigenfrequencies in the theory of two-component elastic mixtures. Quart. J. Mech. Appl. Math. 51, 427–437 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  166. Svanadze, M.: Fundamental solution in the theory of consolidation with double porosity. J. Mech. Behav. Mater. 16(1–2), 123–130 (2005)

    Google Scholar 

  167. Svanadze, M.: Plane waves and eigenfrequencies in the linear theory of binary mixtures of thermoelastic solids. J. Elast. 92, 195–207 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  168. Svanadze, M.: Dynamical problems of the theory of elasticity for solids with double porosity. Proc. Appl. Math. Mech. 10(1), 309–310 (2010)

    Article  MathSciNet  Google Scholar 

  169. Svanadze, M.: Plane waves and boundary value problems in the theory of elasticity for solids with double porosity. Acta Appl. Math. 122, 461–471 (2012)

    MathSciNet  MATH  Google Scholar 

  170. Svanadze, M.: The boundary value problems of the fully coupled theory of poroelasticity for materials with double porosity. Proc. Appl. Math. Mech. 12(1), 279–282 (2012)

    Article  Google Scholar 

  171. Svanadze, M.: Fundamental solution in the linear theory of consolidation for elastic solids with double porosity. J. Math. Sci. 195, 258–268 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  172. Svanadze, M.: Uniqueness theorems in the theory of thermoelasticity for solids with double porosity. Meccanica 49, 2099–2108 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  173. Svanadze, M.: On the theory of viscoelasticity for materials with double porosity. Disc. Contin. Dynam. Syst. Ser. B 19, 2335–2352 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  174. Svanadze, M.: Boundary value problems in the theory of thermoporoelasticity for materials with double porosity. Proc. Appl. Math. Mech. 14(1), 327–328 (2014)

    Article  MathSciNet  Google Scholar 

  175. Svanadze, M.: Large existence of solutions in thermoelasticity theory of steady vibrations. In: Hetnarski, R.B. (ed), Encyclopedia of Thermal Stresses, 11 vols., 1st edn., pp. 2677–2687. Springer, Berlin (2014)

    Google Scholar 

  176. Svanadze, M.: Potentials in thermoelasticity theory. In: Hetnarski, R.B. (ed.), Encyclopedia of Thermal Stresses, 11 vols., 1st edn., pp. 4013–4023. Springer, Berlin (2014)

    Google Scholar 

  177. Svanadze, M.: External boundary value problems of steady vibrations in the theory of rigid bodies with a double porosity structure. Proc. Appl. Math. Mech. 15(1), 365–366 (2015)

    Article  MathSciNet  Google Scholar 

  178. Svanadze, M.: Plane waves, uniqueness theorems and existence of eigenfrequencies in the theory of rigid bodies with a double porosity structure. In: Albers, B., Kuczma, M. (eds.) Continuous Media with Microstructure, vol. 2, pp. 287–306. Springer, Basel (2016)

    Chapter  Google Scholar 

  179. Svanadze, M.: On the linear theory of thermoelasticity for triple porosity materials. In: Ciarletta, M., Tibullo, V., Passarella, F. (eds), Proceedings of 11th International Congress Thermal Stresses, 5–9 June, 2016, Salerno, Italy, pp. 259–262 (2016)

    Google Scholar 

  180. Svanadze, M.: Fundamental solutions in the theory of elasticity for triple porosity materials. Meccanica 51, 1825–1837 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  181. Svanadze, M.: Boundary value problems in the theory of thermoelasticity for triple porosity materials. In: Proceedings of ASME2016. 50633; Vol. 9: Mechanics of Solids, Structures and Fluids; NDE, Diagnosis, and Prognosis, V009T12A079. November 11, 2016, IMECE2016-65046 (2016). https://doi.org/10.1115/IMECE2016-65046

  182. Svanadze, M.: Boundary value problems of steady vibrations in the theory of thermoelasticity for materials with double porosity structure. Arch. Mech. 69, 347–370 (2017)

    MathSciNet  MATH  Google Scholar 

  183. Svanadze, M.: External boundary value problems in the quasi static theory of thermoelasticity for triple porosity materials. Proc. Appl. Math. Mech. 17(1), 471–472 (2017)

    Article  Google Scholar 

  184. Svanadze, M.: Steady vibrations problems in the theory of elasticity for materials with double voids. Acta Mech. 229, 1517–1536 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  185. Svanadze, M.: Potential method in the theory of elasticity for triple porosity materials. J. Elast. 130, 1–24 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  186. Svanadze, M.: Potential method in the linear theory of triple porosity thermoelasticity. J. Math. Anal. Appl. 461, 1585–1605 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  187. Svanadze, M.: On the linear equilibrium theory of elasticity for materials with triple voids. Quart. J. Mech. Appl. Math. 71, 329–248 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  188. Svanadze, M.: External boundary value problems in the quasi static theory of thermoelasticity for materials with triple voids. Proc. Appl. Math. Mech. 18(1), e201800171 (2018)

    Article  Google Scholar 

  189. Svanadze, M.: Fundamental solutions in the linear theory of thermoelasticity for solids with triple porosity. Math. Mech. Solids 24, 919–938 (2019)

    Article  MathSciNet  Google Scholar 

  190. Svanadze, M.: On the linear theory of double porosity thermoelasticity under local thermal non-equilibrium. J. Therm. Stresses 42, 890–913 (2019)

    Article  Google Scholar 

  191. Svanadze, M.: Potential method in the theory of thermoelasticity for materials with triple voids. Arch. Mech. 71, 113–136 (2019)

    MathSciNet  Google Scholar 

  192. Svanadze, M., de Boer, R.: On the representations of solutions in the theory of fluid-saturated porous media. Quart. J. Mech. Appl. Math. 58, 551–562 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  193. Svanadze, M., De Cicco, S.: Fundamental solutions in the full coupled linear theory of elasticity for solid with double porosity. Arch. Mech. 65, 367–390 (2013)

    MathSciNet  Google Scholar 

  194. Svanadze, M., Scalia, A.: Mathematical problems in the coupled linear theory of bone poroelasticity. Comput. Math. Appl. 66, 1554–1566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  195. Svanadze, M., Scalia, A.: Potential method in the theory of thermoelasticity with microtemperatures for microstretch solids. Trans. Nanjing Univ. Aeron. Astron. 31, 159–163 (2014)

    Google Scholar 

  196. Svanadze, M.M.: External boundary value problems in the quasi static theory of viscoelasticity for Kelvin-Voigt materials with double porosity. Proc. Appl. Math. Mech. 16(1), 497–498 (2016)

    Article  Google Scholar 

  197. Svanadze, M.M.: Fundamental solutions and uniqueness theorems in the theory of viscoelasticity for materials with double porosity. Trans. A. Razmadze Math. Inst. 172, 276–292 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  198. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics. Handbuch der Physik, Band III/3, Flügge, S. (ed.). Springer, Berlin (1965)

    Google Scholar 

  199. Truesdell, C., Toupin, R.: The Classical Field Theories. Handbuch der Physik, Band III/1, Flügge, S. (ed.). Springer, Berlin (1960)

    Google Scholar 

  200. Tsagareli, I.: Explicit solution of elastostatic boundary value problems for the elastic circle with voids. Adv. Math. Phys. 2018, 6275432, 6pp. (2018). https://doi.org/10.1155/2018/6275432

  201. Tsagareli, I., Bitsadze, L.: Explicit solution of one boundary value problem in the full coupled theory of elasticity for solids with double porosity. Acta Mech. 26, 1409–1418 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  202. Tsagareli, I., Bitsadze, L.: Explicit solutions on some problems in the fully coupled theory of elasticity for a circle with double porosity. Bull. TICMI 20, 11–23 (2016)

    MathSciNet  MATH  Google Scholar 

  203. Tsagareli, I., Svanadze, M.M.: Explicit solution of the problems of elastostatics for an elastic circle with double porosity. Mech. Res. Commun. 46, 76–80 (2012)

    Article  Google Scholar 

  204. Vafai, K.: Porous Media: Applications in Biological Systems and Biotechnology. CRC Press, Boca Raton (2011)

    Google Scholar 

  205. Verruijt, A.: Theory and Problems of Poroelasticity. Delft University of Technology, Delft (2015)

    Google Scholar 

  206. Wang, H.F.: Theory of Linear Poro-Elasticity with Applications to Geomechanics and Hydrogeology. Princeton University Press, Princeton (2000)

    Google Scholar 

  207. Warren, J.R., Root, P.J.: The behaviour of naturally fractured reservoirs. Soc. Pet. Eng. J. 228, 245–255 (1963)

    Article  Google Scholar 

  208. Wei, Z., Zhang, D.: Coupled fluid - flow and geomechanics for triple - porosity/dual - permeability modelling of coalbed methane recovery. Int. J. Rock Mech. Min. Sci. 47, 1242–1253 (2008)

    Article  Google Scholar 

  209. Wilson, R.K., Aifantis, E.C.: On the theory of consolidation with double porosity - I. Int. J. Eng. Sci. 20, 1009–1035 (1982)

    Article  MATH  Google Scholar 

  210. Wu, Y.-S.: Multiphase Fluid Flow in Porous and Fractured Reservoirs. Elsevier, Amsterdam (2016)

    Google Scholar 

  211. Wu, Y.-S., Liu, H.H., Bodavarsson, G.S.: A triple-continuum approach for modelling flow and transport processes in fractured rock. J. Contam. Hydrol. 73, 145–179 (2004)

    Article  Google Scholar 

  212. Zhang, W., Xu, J., Jiang, R., Cui, Y., Qiao, J., Kang, C., Lu, Q.: Employing a quad-porosity numerical model to analyze the productivity of shale gas reservoir. J. Petrol. Sci. Eng. 157, 1046–1055 (2017)

    Article  Google Scholar 

  213. Zhao, Y., Chen, M.: Fully coupled dual-porosity model for anisotropic formations. Int. J. Rock Mech. Min. Sci. 43, 1128–1133 (2006)

    Article  Google Scholar 

  214. Zou, M., Wei, C., Yu, H., Song, L.: Modelling and application of coalbed methane recovery performance based on a triple porosity/dual permeability model. J. Nat. Gas Sci. Eng. 22, 679–688 (2015)

    Article  Google Scholar 

  215. Svanadze, M.M.: Plane waves and problems of steady vibrations in the theory of viscoelasticity for Kelvin-Voigt materials with double porosity. Arch. Mech. 68, 441–458 (2016)

    MathSciNet  MATH  Google Scholar 

  216. Svanadze, M.M.: Fundamental solution and uniqueness theorems in the linear theory of thermoviscoelasticity for solids with double porosity. J. Therm. Stresses 40, 1339–1352 (2017)

    Article  Google Scholar 

  217. Svanadze, M.M.: External boundary value problems in the quasi static theory of thermoviscoelasticity for Kelvin-Voigt materials with double porosity. Proc. Appl. Math. Mech. 17(1), 469–470 (2017)

    Article  Google Scholar 

  218. Ciarletta, M., Straughan, B., Zampoli, V.: Thermo-poroacoustic acceleration waves in elastic materials with voids without energy dissipation. Int. J. Eng. Sci. 45, 736–743 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Svanadze, M. (2019). Introduction. In: Potential Method in Mathematical Theories of Multi-Porosity Media. Interdisciplinary Applied Mathematics, vol 51. Springer, Cham. https://doi.org/10.1007/978-3-030-28022-2_1

Download citation

Publish with us

Policies and ethics