Skip to main content

An Innovative Approach for Modeling Cumulative Effect of Variations in the Land Use/Land Cover Factors on Regional Persistence of the Persian Leopard

  • Chapter
  • First Online:
Research and Management Practices for Conservation of the Persian Leopard in Iran

Abstract

Cumulative effect of various land use and land cover variables that eventually affect suitability level of set/sets of habitats is a main concern in wildlife habitat conservation efforts. Even though, there have been various methodologies to identify the factors that influence probability of species persistence, survival, or occurrence in a particular habitat, no research has been conducted to assess the cumulative effects of LU/LC variations on the Persian leopard regional persistence (e.g., in several provinces, regions). Innovative formulation of the species and area specific regional indices, sub-indices, and threshold levels was carried out concerning the Persian leopard persistence in various regions of Iran (see chapterĀ 3 for classification of regions). Regional and provincial values were assessed for the density of several variables including protected area, national park, wildlife reserve, forest, range lands, dry farming and irrigated farming, city, main and sub roads, village and human population. Principle Component Analysis and regression curve estimation techniques are the main analysis methods used in this study. Developing two types of empirically fitted models allows for adjusting the density of land use and land cover variables in a way to ensure that leopard persistence is not affected by the cumulative effect of the variables. Accordingly, current status of all provinces of Iran in relation to the cumulative effects of land use and land cover variables comparing to the corresponding threshold values together with relative conservation strategy is demonstrated in this chapter. Also, the findings support that the Persian leopard range in Iran is in the process of a major fragmentation into the northern and southern parts. Furthermore, this approach provides an insight to the managers and decision makers in order to identify wildlife friendly solutions in LU/LC and development planning. Since the leopard is an umbrella species, this model could be used to improve conservation status of the other co-existed species in leopard habitats (e.g., gray wolf, brown bear, wild goat, wild sheep, red deer, roe deer, etc.). Due to the fact that this innovative approach is on the basis of the data assessed about the Persian leopard in a regional context in Iran, the models are considered to be species and region specific. However, the same technical procedures can be modified using the area specific data for the leopard or other species in other countries and regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • AndrĆ©n, H. (1994). Effects of habitat fragmentation on birds and mammals in landscapes with different proportions of suitable habitat: A review. Oikos, 71, 355ā€“366.

    ArticleĀ  Google ScholarĀ 

  • Badaruddoza, Kumar, R., & Kaur, M. (2015). Principal component analysis of cardiovascular risk traits in three generations cohort among Indian Punjabi population. Journal of Advanced Research, 6(5), 739ā€“746.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Boyle, J. R., Warila, J. E., Beschta, R. L., Reiter, M., Chambers, C. C., Gibson, W. P., ā€¦ Mccomb, W. C. (1997). Cumulative effects of forestry practices: An example framework for evaluation from Oregon, USA. Biomass and Bioenergy, 13(4ā€“5), 223ā€“245.

    ArticleĀ  Google ScholarĀ 

  • Braeken, J., & Van Assen, M. A. (2017). An empirical Kaiser criterion. Psychological Methods, 22(3), 450ā€“466.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Brown, J. D. (2009). Choosing the right type of rotation in PCA and EFA. JALT Testing and Evaluation SIG Newsletter, 13(3), 20ā€“25.

    Google ScholarĀ 

  • Bryant, F. B., & Yarnold, P. R. (1995). Principal-components analysis and exploratory and confirmatory factor analysis. In L. G. Grimm & P. R. Yarnold (Eds.), Reading and understanding multivariate statistics (pp. 99ā€“136). Washington, DC: American Psychological Association.

    Google ScholarĀ 

  • Chhabra, A., Geist, H., Houghton, R. A., Haberl, H., Braimoh, A. K., Vlek, P. L. G., ā€¦ Lambdin, E. F. (2006). Multiple impacts of land-use/cover change. In F. Lambin & H. J. Geist (Eds.), Land-use and land-cover change: Local processes and global impacts (pp. 71ā€“87). Berlin, Germany: Springer Publishers.

    ChapterĀ  Google ScholarĀ 

  • Comrey, A. L., & Lee, H. B. (1992). A first course in factor analysis. London, UK: Taylor & Francis.

    Google ScholarĀ 

  • Dengler, J., Lƶbel, S., & Dolnik, C. (2009). Species constancy depends on plot sizeā€“A problem for vegetation classification and how it can be solved. Journal of Vegetation Science, 20(4), 754ā€“766. https://doi.org/10.1111/j.1654-1103.2009.01073.x

    ArticleĀ  Google ScholarĀ 

  • Department of Environment of Iran. (2012). Status of the areas under auspice of the Department of Environment. Tehran, Iran. Unpublished document.

    Google ScholarĀ 

  • Durham, C. A., & King, R. P. (2010). Principles of principal component analysis. Journal of Food Distribution Research, 41(1), 35ā€“39.

    Google ScholarĀ 

  • Eltringham, S. K. (1979). The ecology and conservation of large African mammals (p. 166). London and Basingstoke, UK: The Macmillan press.

    Google ScholarĀ 

  • Estelaji, A., & Shariat Panahi, M. V. (2013). Iran human geography (p. 200). Tehran, Iran: National Geographical Organization Publication.

    Google ScholarĀ 

  • Faucon, M. P., Parmentier, I., Colinet, G., Mahy, G., Luhembwe, M. N., & Meerts, P. (2011). May rare metallophytes benefit from disturbed soils following mining activity? The case of the Crepidorhopalon tenuis in Katanga (D. R. Congo). Restoration Ecology, 19, 333ā€“343.

    ArticleĀ  Google ScholarĀ 

  • Field, A. P. (2005). Discovering statistics using SPSS (2nd ed.). London, UK: Sage.

    Google ScholarĀ 

  • Gardner, R. H., & Oā€™Neill, R. V. (1991). Pattern, process, and predictability: The use of neutral models for landscape analysis. In M. G. Turner & R. H. Gardner (Eds.), Quantitative methods in landscape ecology (pp. 289ā€“307). New York, NY: Springer.

    ChapterĀ  Google ScholarĀ 

  • Glor, R. E., & Warren, D. (2010). Testing ecological explanations for biogeographic boundaries. Evolution, 65(3), 673ā€“683.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Goff, F. G., & Mitchell, R. (1975). A comparison of species ordination results from plot and stand data. Vegetatio, 31(1), 15ā€“22. https://doi.org/10.1007/BF00127871

    ArticleĀ  Google ScholarĀ 

  • Golub, G. H., Zhang, Z., & Zha, H. (2000). Large sparse symmetric eigenvalue problems with homogeneous linear constraints: The Lanczos process with innerā€“outer iterations. Linear Algebra and its Applications, 309(1ā€“3), 289ā€“306.

    ArticleĀ  Google ScholarĀ 

  • Gorsuch, R. L. (1983). Factor analysis (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google ScholarĀ 

  • Gotelli, N. J., & Ellison, A. M. (2004). A primer of ecological statistics. Sunderland, MA: Sinauer Associates Publishers.

    Google ScholarĀ 

  • Hatcher, L. (1994). A step-by-step approach to using the SAS system for factor analysis and structural equation modelling. Cary, NC: SAS Institute.

    Google ScholarĀ 

  • Hetzel, R. D. (1996). A primer on factor analysis with comments on patterns of practice and reporting. In B. Thompson (Ed.), Advances in social science methodology (Vol. 4, pp. 175ā€“206). Greenwich, CT: JAI Press.

    Google ScholarĀ 

  • Holyoak, M. (2000). Habitat Patch Arrangement and Metapopulation Persistence of Predator and Prey. The American Naturalist, 156,4.

    ArticleĀ  Google ScholarĀ 

  • Hutcheson, G., & Sofroniou, N. (1999). The multivariate social scientist: Introductory statistics using generalized linear models. London, UK: Sage Publication.

    BookĀ  Google ScholarĀ 

  • Iran Land Cover Map (2008). Tehran, Iran: National Geographical Organization of Iran. Unpublished Documents.

    Google ScholarĀ 

  • Iran Land Use Map (2008). Tehran, Iran: National Geographical Organization of Iran. Unpublished Documents.

    Google ScholarĀ 

  • Janžekovič, F., & Novak, T. (2012). PCA: A powerful method for analyse ecological niches (Doctoral dissertation). Fakulteta Za Naravoslovje in Matematiko, Univerza v Mariboru, Slovenia.

    Google ScholarĀ 

  • Johnson, C. J., Boyce, M. S., Case, R. L., Cluff, H. D., Gau, R., Gunn, A., & Mulders, R. (2005). Cumulative effects of human developments on Arctic wildlife. Wildlife Monograph, 160, 1ā€“36.

    Google ScholarĀ 

  • Kaiser, H. F. (1960). The application of electronic computers to factor analysis. Educational and Psychological Measurement, 20(1), 141ā€“151.

    ArticleĀ  Google ScholarĀ 

  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31ā€“36.

    ArticleĀ  Google ScholarĀ 

  • Kellow, J. T. (2006). Using principal components analysis in program evaluation: Some practical considerations. Journal of MultiDisciplinary Evaluation, 3(5), 89ā€“107.

    Google ScholarĀ 

  • Kennedy, C., Wilkison, J. B., & Balch, J. (2003). Conservation thresholds for land use planners. Washington, DC: Environmental Law Institute.

    Google ScholarĀ 

  • Kieffer, K. M. (1998). Orthogonal versus oblique factor rotation: A review of the literature regarding the pros and cons. Paper presented at the 27th Annual Meeting of the Mid-South Educational Research Association, New Orleans, LA. November, 1998. Retrieved from https://files.eric.ed.gov/fulltext/ED427031.pdf

  • Krebs, C. J. (1989). Ecological methodology. New York, NY: Harper-Collins Publishers.

    Google ScholarĀ 

  • Krzyzanowski, J., & Almuedo, P. L. (2010). Cumulative impacts of natural resource development on ecosystems and wildlife: An annotated bibliography for British Columbia. FORREX Series, 26.

    Google ScholarĀ 

  • MacCallum, R. C., Widaman, K. F., Preacher, K. J., & Hong, S. (2001). Sample size in factor analysis: The role of model error. Multivariate Behavioural Research, 36, 611ā€“637. https://doi.org/10.1207/S15327906MBR3604_06

    ArticleĀ  CASĀ  Google ScholarĀ 

  • MacCallum, R. C., Widaman, K. F., Zhang, S., & Hong, S. (1999). Sample size in factor analysis. Psychological Methods, 4, 84ā€“99. https://doi.org/10.1037/1082-989X.4.1.84

    ArticleĀ  Google ScholarĀ 

  • Manville, A. M. (2005). Bird strikes and electrocutions at power lines, communication towers, and wind turbines: State Of the art and state of the scienceā€“next steps toward mitigation. In USDA forest service general technical report PSW-GTR-191 (pp. 1051ā€“1064). Albany, CA: Pacific South Research Station.

    Google ScholarĀ 

  • McDonald, R. P. (1985). Factor analysis and related methods. Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google ScholarĀ 

  • McGarigal, K., Romme, W. H., Crist, M., & Roworth, E. (2001). Cumulative effects of roads and logging on landscape structure in the San Juan Mountains, Colorado (USA). Landscape Ecology, 16(4), 327ā€“349.

    ArticleĀ  Google ScholarĀ 

  • Mundfrom, D. J., Shaw, D. G., & Ke, T. L. (2005). Minimum sample size recommendations for conducting factor analyses. International Journal of Testing, 5, 159ā€“168. https://doi.org/10.1207/s15327574ijt0502_4

    ArticleĀ  Google ScholarĀ 

  • National Geographical Organization of Iran. (2011). Guide atlas of Iranian provinces (3rd ed., p. 67). Tehran, Iran: Author.

    Google ScholarĀ 

  • Nunnally, J. C. (1978). Psychometric theory (2nd ed.). New York, NY: McGraw Hill.

    Google ScholarĀ 

  • Nyamasyo, S. K., & Odiara Kihima, B. (2014). Changing land use patterns and their impacts on wild ungulates in Kimana wetland ecosystem, Kenya. International Journal of Biodiversity, 2014(2014), 1ā€“10.

    ArticleĀ  Google ScholarĀ 

  • Oā€™Rourke, N., & Hatcher, L. (2013). A step-by-step approach to using SAS for factor analysis and structural equation modeling (2nd ed.). Cary, NC: SAS Institute.

    Google ScholarĀ 

  • Okland, R. H., Eilersten, O., & Okland, T. (1990). On the relationship between sample size and beta diversity in boreal coniferous forests. Vegetatio, 87, 187ā€“190. https://doi.org/10.1007/BF00042954

    ArticleĀ  Google ScholarĀ 

  • OtypkovĆ”, Z., & ChytrĆ½, M. (2006). Effects of plot size on the ordination of vegetation samples. Journal of Vegetation Science, 17(4), 465ā€“472.

    ArticleĀ  Google ScholarĀ 

  • Pearman, P. B. (2002). The scale of community structure: Habitat variation and avian guilds in tropical forest understory. Ecological Monographs, 72, 19ā€“39.

    ArticleĀ  Google ScholarĀ 

  • Pedhazur, E. J., & Schmelkin, L. P. (1991). Measurement, design, and analysis: An integrated approach. Hillsdale, NJ: Erlbaum.

    Google ScholarĀ 

  • Penha, R. M. L., & Hines, J. W. (2001). Using principal component analysis modeling to monitor temperature sensors in a nuclear research reactor. In Proceedings from the maintenance and reliability conference. Knoxville, TN: University of Tennessee.

    Google ScholarĀ 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (2007). Numerical recipes: The art of scientific computing (p. 1235). London, UK: Cambridge University Press.

    Google ScholarĀ 

  • Rencher, A. C., & Schaalje, G. B. (2008). Linear models in statistics (2nd ed., p. 672). Hoboken, NJ: Wiley.

    Google ScholarĀ 

  • Rietveld, T., & Van Hout, R. (1993). Statistical techniques for the study of language and language behaviour. Berlin, Germany/New York, NY: Walter de Gruyter.

    BookĀ  Google ScholarĀ 

  • RingnĆ©r, M. (2008). What is principal component analysis? Nature Biotechnology, 26(3), 303ā€“304.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Rissler, L. J., & Apodaca, J. J. (2007). Adding more ecology into species delimitation: Ecological niche models and phylogeography help define cryptic species in the Black Salamander (Aneides flavipunctatus). Systematic Biology, 56, 924ā€“942.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Robertson, M. P., Caithness, N., & Villet, M. H. (2001). A PCA-based modelling technique for predicting environmental suitability for organisms from presence records. Diversity and Distributions, 7(1ā€“2), 15ā€“27.

    ArticleĀ  Google ScholarĀ 

  • Roques, L., & Hamel, F. (2007). Mathematical analysis of the optimal habitat configurations for species persistence. Mathematical Biosciences, 210(1), 34ā€“59.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Roques, L. & Stoica, R.S. (2007). Species Persistence Decreases with Habitat Fragmentation: An Analysis in Periodic Stochastic Environments. Journal of Mathematical Biology, 55, 189ā€“205.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Sanei, A. (2020). Novel classification of natural and socioeconomic characteristics for the Persian Leopard research and conservation programs. In A. Sanei (Ed.), Research and management practices for conservation of the Persian Leopard in Iran. New York, NY: Springer.

    Google ScholarĀ 

  • Sanei, A., Mousavi, M., Kiabi, B. H., Masoud, M. R., Gord Mardi, E., Mohamadi, H., ā€¦ Raeesi, T. (2016). Status assessment of the Persian Leopard in Iran. Cat News Special Issue, 10, 43ā€“50.

    Google ScholarĀ 

  • Sanei, A., Mousavi, M., Mousivand, M., & Zakaria, M. (2012). Assessment of the Persian leopard mortality rate in Iran. In Proceedings from UMT 11th International Annual Symposium on Sustainability Science and Management (pp. 1458ā€“1462). Terengganu, Malaysia: Universiti Malaysia Terengganu.

    Google ScholarĀ 

  • Sanei, A., Zakaria, M., Daraei, L., Besmeli, M. R., Esfandiari, F., & Veisi, H. (2020). Countrywide distribution of the Persian Leopard potential habitats in a regional basis in Iran. In A. Sanei (Ed.), Research and management practices for conservation of the Persian Leopard in Iran. New York, NY: Springer.

    Google ScholarĀ 

  • Sanei, A., Zakaria, M., Mohamadi, H., Masoud, M. R., Jafari, B., Delshab, H., ā€¦ Poursalem, S. (2020). Ground validation of the Persian Leopard MaxEnt potential distribution models: An evaluation to three threshold rules. In A. Sanei (Ed.), Research and management practices for conservation of the Persian Leopard in Iran. New York, NY: Springer.

    Google ScholarĀ 

  • Shaukat, S. S., Rao, T. A., & Khan, M. A. (2016). Impact of sample size on principal component analysis ordination of an environmental data set: Effects on eigenstructure. Ekologia, 35(2), 173ā€“190.

    ArticleĀ  Google ScholarĀ 

  • Smith, L. I. (2002). A tutorial on principal components analysis. Cornell University, USA, 51(52), 65.

    Google ScholarĀ 

  • Statistical Centre of Iran. (2012). Iran statistical yearbook. Tehran, Iran: Presidency of the I.R.I., Vice Presidency for Strategic Planning and Supervision.

    Google ScholarĀ 

  • Stevens, J. (1992). Applied multivariate statistics for the social sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.

    Google ScholarĀ 

  • Stevens, J. (2002). Applied multivariate statistics for the social sciences (4th ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

    Google ScholarĀ 

  • Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). Upper Saddle River, NJ: Pearson Allyn & Bacon.

    Google ScholarĀ 

  • Ter Braak, C. J. (1995). Non-linear methods for multivariate statistical calibration and their use in palaeoecology: A comparison of inverse (K-nearest neighbours, partial least squares and weighted averaging partial least squares) and classical approaches. Chemometrics and Intelligent Laboratory Systems, 28(1), 165ā€“180.

    ArticleĀ  Google ScholarĀ 

  • Theobald, D. M., Miller, J. R., & Hobbs, N. T. (1997). Estimating the cumulative effects of development on wildlife habitat. Landscape and Urban Planning, 39(1), 25ā€“36.

    ArticleĀ  Google ScholarĀ 

  • Thompson, B. (1984). Canonical correlation analysis: Uses and 2R factor rotation 26 interpretation. Thousand Oaks, CA: Sage.

    BookĀ  Google ScholarĀ 

  • Thurstone, L. L. (1947). Multiple factor analysis: A development and expansion of vectors of the mind. Chicago, IL: University of Chicago Press.

    Google ScholarĀ 

  • Van der Hoek, Y., Zuckerberg, B., & Manne, L. L. (2015). Application of habitat thresholds in conservation: Considerations, limitations, and future directions. Global Ecology & Conservation, 3, 736ā€“743.

    ArticleĀ  Google ScholarĀ 

  • Velicer, W. F., & Fava, J. L. (1998). The effects of variable and subject sampling on factor pattern recovery. Psychological Methods, 3, 231ā€“251. https://doi.org/10.1037/1082-989X.3.2.231

    ArticleĀ  Google ScholarĀ 

  • Vogt, W. P. (1993). Dictionary of statistics and methodology: A nontechnical guide for the social sciences. Newbury Park, CA: Sage.

    Google ScholarĀ 

  • Walker, D. A., Forbes, B. C., Leibman, M. O., Epstein, H. E., Bhatt, U. S., Comiso, J. C., ā€¦ Kaplan, J. O. (2011). Cumulative effects of rapid land-cover and land-use changes on the Yamal Peninsula, Russia. In Eurasian arctic land cover and land use in a changing climate (pp. 207ā€“236). Amsterdam, The Netherlands: Springer.

    Google ScholarĀ 

  • Youlatos, D. (2004). Multivariate analysis of organismal and habitat parameters in two neotropical primate communities. American Journal of Physical Anthropology, 123(2), 181ā€“194.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

Authors would like to acknowledge Dr. Tone Novak and Peter Kozel for their comments regarding statistical techniques. We would like to acknowledge Persian Leopard Online Portal for allowing us to access the archived data. We appreciate Touran-Dokht Sarmast and Houshang Hermidas for their valuable supports during the researches.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo Sanei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanei, A., Zakaria, M., Mohamad Kasim, M.R., Mohd, A. (2020). An Innovative Approach for Modeling Cumulative Effect of Variations in the Land Use/Land Cover Factors on Regional Persistence of the Persian Leopard. In: Sanei, A. (eds) Research and Management Practices for Conservation of the Persian Leopard in Iran. Springer, Cham. https://doi.org/10.1007/978-3-030-28003-1_6

Download citation

Publish with us

Policies and ethics