Skip to main content
  • 176 Accesses

Abstract

This part is consisted of 6 other chapters concerned with various research programs dedicated to the Persian leopard in Iran. The first chapter is an introduction to the historical and cultural significance of the species. Furthermore, conservation requirements of the leopard is also discussed. In the next chapter, natural and socioeconomic characteristics across the leopard range which is almost in all provinces of the country is considered for an innovative classification of the regions for further research and conservation programs. The result is used in the third chapter for a countrywide distribution modeling of the Persian leopard potential habitats on a regional basis. The findings of the third chapter provide a basis for the next research concerning ground validations of developed MAXENT potential distribution models. This chapter also provides an evaluation to three threshold rules according to the ground validation techniques. Findings elaborated in the previous chapters are used in the fifth manuscript to develop innovative species-specific models to assess cumulative effects of land use and land cover variations on the regional persistence of the leopard. In the last research chapter of this section, an overview is presented concerning the leopard potential habitats in East-Azarbaijan province and the transboundary habitats in the Iranian sector of the Caucasus Ecoregion. To be consistent and clear in all the chapters of the first part of this book, a general overview is presented here to provide definitions for the key terms and the relative ecological concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akçakaya, H. R. (1992). Population viability analysis and risk assessment. In D. McCullough & R. H. Barrett (Eds.), Wildlife 2001: Populations (pp. 148–157). Bern, The Netherlands: Springer.

    Chapter  Google Scholar 

  • Akçakaya, H. R. (2000). Viability analyses with habitat-based metapopulation models. Population Ecology, 42(1), 45–53.

    Article  Google Scholar 

  • Anderson, S. H. (1999). Managing our wildlife resources. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Araújo, M. B., & Peterson, A. T. (2012). Uses and misuses of bioclimatic envelope modelling. Ecology, 93, 1527–1539.

    Article  PubMed  Google Scholar 

  • Araújo, M. B., & Williams, P. H. (2000). Selecting areas for species persistence using occurrence data. Biological Conservation, 96(3), 331–345.

    Article  Google Scholar 

  • Ayala, F. J. (1970). Competition, coexistence and evolution. In M. K. Hecht & W. S. Steere (Eds.), Essays in evolution and genetics in honor of Theodosis Dobzhansky (pp. 121–158). New York, NY: Appleton-Century-Crofts.

    Chapter  Google Scholar 

  • Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., … Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling, 222(11), 1810–1819.

    Google Scholar 

  • Beier, P., & Loe, S. (1992). A checklist for evaluating impacts to wildlife movement corridors. Wildlife Social Bulletin, 20, 434–440.

    Google Scholar 

  • Bennett, G., & Mulongoy, K. J. (2006). Review of experience with ecological networks, corridors and buffer zones. Secretariat of the Convention on Biological Diversity, Montreal, Technical Series, 23, 100.

    Google Scholar 

  • Bertuzzo, E., Suweis, S., Mari, L., Maritan, A., Rodríguez-Iturbe, I., & Rinaldo, A. (2011). Spatial effects on species persistence and implications for biodiversity. Proceedings of the National Academy of Sciences, 108(11), 4346–4351.

    Article  CAS  Google Scholar 

  • Bond, N. R., & Lake, P. S. (2003). Local habitat restoration in streams: Constraints on the effectiveness of restoration for stream biota. Ecological Management & Restoration, 4(3), 193–198.

    Article  Google Scholar 

  • Brown, J. H. (1971). Mammals on mountaintops: Nonequilibrium insular biogeography. The American Naturalist, 105(945), 467–478.

    Article  Google Scholar 

  • Colwell, R. K., & Rangel, T. F. (2009). Hutchinson’s duality: The once and future niche. Proceedings of the National Academy of Sciences, 106(2), 19651–19658.

    Article  CAS  Google Scholar 

  • Cushman, S. A., & Landguth, E. L. (2012). Multi-taxa population connectivity in the northern Rocky Mountains. Ecological Modelling, 231, 101–112.

    Article  Google Scholar 

  • De Jong, W. (2010). Forest rehabilitation and its implication for forest transition theory. Biotropica, 42(1), 3–9.

    Article  Google Scholar 

  • Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution and Systematics, 40(1), 677–697.

    Article  Google Scholar 

  • Elton, C. S. (1927). Animal ecology. London, UK: Sidgwick and Jackson.

    Google Scholar 

  • Elton, C. S. (2001). Animal ecology. Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Elton, C. S., & Miller, R. S. (1954). The ecological survey of animal communities: With a practical system of classifying habitats by structural characters. Journal of Ecology, 42(2), 460–496.

    Article  Google Scholar 

  • Fahrig, L. (2002). Effect of habitat fragmentation on the extinction threshold: A synthesis. Ecological Applications, 12(2), 346–353.

    Google Scholar 

  • Flather, C. H., Hayward, G. D., Beissinger, S. R., & Stephens, P. A. (2011). Minimum viable populations: Is there a ‘Magic Number’ for conservation practitioners? Trends in Ecology and Evolution, 26, 307–316.

    Article  PubMed  Google Scholar 

  • Franklin, I. R. (1980). Evolutionary changes in small populations. In M. E. Soulé & B. M. Wilcox (Eds.), Conservation biology an evolutionary-ecological perspective (pp. 135–149). Sunderland, MA: Sinauer.

    Google Scholar 

  • Franklin, J. (2010). Mapping species distribution: Spatial inference and prediction. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Gerber, B. D., Karpanty, S. M., & Randrianantenaina, J. (2012). The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests. Oryx, 46, 414–422.

    Article  Google Scholar 

  • Grinnell, J. (1904). The origin and distribution of the chestnut-backed chickadee. The Auk, 21(3), 364–378.

    Article  Google Scholar 

  • Grinnell, J. (1917). The niche-relationships of the California thrasher. The Auk, 34(4), 427–433.

    Article  Google Scholar 

  • Grinnell, J. (1924). Geography and evolution. Ecology, 5(3), 225–229.

    Article  Google Scholar 

  • Guisan, A., & Zimmermann, E. N. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2), 147–186.

    Article  Google Scholar 

  • Hanski, I., & Gilpin, M. (1991). Metapopulation dynamics: Brief history and conceptual domain. Biological Journal of the Linnean Society, 42, 3–16.

    Article  Google Scholar 

  • Harmon, L. J., & Braude, S. (2010). Conservation of small populations: Effective population size, inbreeding, and the 50/500 rule. In S. Braude & S. B. Low (Eds.), An introduction to methods and models in ecology and conservation biology (pp. 125–138). Princeton, NJ: Princeton University Press.

    Chapter  Google Scholar 

  • Harris, L. D. (1984). The fragmented forest: Island biogeography theory and preservations of biotic diversity. Chicago, IL: University Chicago Press.

    Book  Google Scholar 

  • Hirzel, A., & Le Lay, G. (2008). Habitat suitability modelling and niche theory. Journal of Applied Ecology, 45, 372–1381.

    Article  Google Scholar 

  • Holden, M. (2008). The effect of habitat fragmentation on population persistence in spatially heterogeneous landscapes. Davis, CA: Department of Mathematics, University of California. Retrieved from. https://www.math.ucdavis.edu/files/6413/5795/0380/HoldenThesis.pdf

  • Holt, R. D. (2009). Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. Proceedings of the National Academy of Sciences, 106, 19659–19665.

    Article  CAS  Google Scholar 

  • Holyoak, M. (2000). Habitat patch arrangement and metapopulation persistence of predator and prey. The American Naturalist, 156, 4.

    Article  Google Scholar 

  • Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposia on Quantitative Biology, 22(2), 415–427.

    Article  Google Scholar 

  • Hutchinson, G. E. (1965). Ecological theatre and the evolutionary play. New Haven, CT: Yale University Press.

    Google Scholar 

  • Hutchinson, G. E. (1978). An introduction to population biology. New Haven, CT: Yale University Press.

    Google Scholar 

  • IUCN. (2007). Connectivity conservation: International experience in planning, establishment and management of biodiversity corridors. Bangkok, Thailand: IUCN Regional Protected Areas Programme.

    Google Scholar 

  • Johnson, K. N., Agee, J., Beschta, R., Dale, V., Hardesty, L., Long, J., … Trosper, R. (1999). Sustaining the people’s lands: Recommendations for stewardship of the national forests and grasslands into the next century. Journal of Forestry, 97(5), 6–12.

    Google Scholar 

  • Johnstone, C., Reina, R., & Lill, A. (2010). Impact of anthropogenic habitat fragmentation on population health in a small, carnivorous marsupial. Journal of Mammalogy, 91, 1332–1341.

    Article  Google Scholar 

  • Khatibi, M., & Sheikholeslami, R. (2016). Ecological niche theory: A brief review of Khorasan provinces, Iran. International Journal of Agriculture and Crop Sciences, 7(6), 297–303.

    Google Scholar 

  • Knaepkens, G., Bervoets, L., Verheyen, E., & Eens, M. (2004). Relationship between population size and genetic diversity in endangered populations of the European bullhead (Cottus gobio): Implications for conservation. Biological Conservation, 115(3), 403–410.

    Article  Google Scholar 

  • Lacy, R. C. (2019). Lessons from 30 years of population viability analysis of wildlife populations. Zoo biology, 38: 67–77.

    Google Scholar 

  • LeBuhn, G., & Miller, Th. E. (2014). Population viability. Retrieved from http://accessscience.com/content/757600

  • Levins, R. (1969). Some demographic and genetic consequences of environmental heterogeneity for biological control. Bulletin of the Entomological Society of America, 15, 237–240.

    Article  Google Scholar 

  • Levins, R. (1970). Extinctions. Some mathematical questions in biology: Lectures on mathematics in the life sciences. American Mathematical Society, 2, 77–107.

    Google Scholar 

  • Lockwood, M., Worboys, G. L., & Kothari, A. (2006). Managing protected areas: A global guide. London, UK: Earthscan.

    Google Scholar 

  • McEuen, A. (1993). The wildlife corridor controversy: A review. Endangered Species Update, 10, 11–12.

    Google Scholar 

  • Meffe, G. K., & Carroll, C. R. (1997). Principles of conservation biology (2nd ed., p. 729). Sunderland, MA: Sinauer and Associates Inc.

    Google Scholar 

  • Mesdaghi, M. (2012). Statistical and regression methods (1st ed.). Mashhad, Iran: Imam Reza International University Press.

    Google Scholar 

  • Michalski, F., & Peres, C. A. (2005). Anthropogenic determinants of primate and carnivore local extinctions in a fragmented forest landscape of southern Amazonia. Biological Conservation, 124, 383–396.

    Article  Google Scholar 

  • Miller, J. (2010). Species distribution modeling. Geography Compass, 4(6), 490–509.

    Article  Google Scholar 

  • Moilanen, A., Franco, A. M., Early, R. I., Fox, R., Wintle, B., & Thomas, C. D. (2005). Prioritizing multiple-use landscapes for conservation: Methods for large multi-species planning problems. Proceedings of the Royal Society of London B: Biological Sciences, 272(1575), 1885–1891.

    Google Scholar 

  • Newmark, W. D. (1987). A land-bridge island perspective on mammalian extinctions in western north American parks. Nature, 325(6103), 430–432.

    Article  CAS  PubMed  Google Scholar 

  • Niebuhr, B. B., Wosniack, M. E., Santos, M. C., Raposo, E. P., Viswanathan, G. M., Da Luz, M. G., & Pie, M. R. (2015). Survival in patchy landscapes: The interplay between dispersal, habitat loss and fragmentation. Scientific Reports, 5, 11898.

    Google Scholar 

  • Noss, R. F., & Cooperrider, A. Y. (1994). Saving nature’s legacy: Protecting and restoring biodiversity. Washington, DC: Defenders of Wildlife and Island Press.

    Google Scholar 

  • Nouhuys, S. V. (2016). Metapopulation ecology. Chichester, UK: Wiley.

    Book  Google Scholar 

  • Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371.

    Article  Google Scholar 

  • Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação, 10(2), 102–107.

    Article  Google Scholar 

  • Phillips, S. J., Dudik, M., & Schapire, R. E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings from the 21st International Conference on Machine Learning (pp. 655–662). New York, NY: ACM Press.

    Google Scholar 

  • Raj, K. (2010). Ecological niche theory. Journal of Human Ecology, 32(3), 175–182.

    Article  Google Scholar 

  • Reed, D. H., O’Grady, J. J., Brook, B. W., Ballou, J. D., & Frankham, R. (2003). Estimates of minimum viable population sizes for vertebrates and factors influencing those estimates. Biological Conservation, 113(1), 23–34.

    Article  Google Scholar 

  • Saunders, D. A., Hobbs, R. J., & Margules, C. R. (1991). Biological consequences of ecosystem fragmentation: A review. Conservation Biology, 5(1), 18–32.

    Article  Google Scholar 

  • Schoener, T. W. (2009). The ecological niche. In S. A. Levin (Ed.), The Princeton guide to ecology. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Shaffer, M. L. (1981). Minimum population sizes for species conservation. Bioscience, 31, 131–134.

    Article  Google Scholar 

  • Sillero, N. (2011). What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods. Ecological Modelling, 222(8), 1343–1346.

    Article  Google Scholar 

  • SoberÏŒn, J., & Peterson, A. T. (2011). Ecological niche shifts and environmental space anisotropy: A cautionary note. Revista Mexicana de Biodiversidad, 82, 1348–1355.

    Google Scholar 

  • Stockwell, D. R. B. (2006). Improving ecological niche models by data mining large environmental datasets for surrogate models. Ecological Modelling, 192, 188–196.

    Article  Google Scholar 

  • Temple, S. A. (1986). The problem of avian extinctions. Current Ornithology, 3, 453.

    Article  Google Scholar 

  • Theobald, D. M., Miller, J. R., & Hobbs, N. T. (1997). Estimating the cumulative effects of development on wildlife habitat. Landscape and Urban Planning, 39(1), 25–36.

    Article  Google Scholar 

  • Turner, I.M. (1996) Species loss in fragments of tropical rain forest: a review of the evidence. Journal of Applied Ecology, 33, 200– 209.

    Google Scholar 

  • Turner, I. M., & Corlett, R. T. (1996). The conservation value of small, isolated fragments of lowland tropical rain forest. Trends in Ecology and Evolution, 11, 330–333.

    Article  CAS  PubMed  Google Scholar 

  • Vold, T., & Buffett, D. A. (Eds.). (2008). Ecological concepts, principles and applications to conservation (p. 36). Biodiversity BC. Retrieved from www.biodiversitybc

  • Watson, M. L. (2005). The effects of roads on wildlife and habitats. Santa Fe, NM: Department of Game and Fish, Conservation Services Division.

    Google Scholar 

  • Wilcox, B. A., & Murphy, D. D. (1985). Conservation strategy: The effects of fragmentation on extinction. The American Naturalist, 125(6), 879–887.

    Article  Google Scholar 

  • With, K. A. (1997). The application of neutral landscape models in conservation biology. Conservation Biology, 11(5), 1069–1080.

    Article  Google Scholar 

  • With, K. A., & King, A. W. (1999). Extinction thresholds for species in fractal landscapes. Conservation Biology, 13(2), 314–326.

    Article  Google Scholar 

  • Young, N., Carter, L., & Evangelista, P. (2011). A MaxEnt Model v3. 3.3 E-tutorial (ArcGIS v10). Fort Collins, CO: Colorado State University.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo Sanei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sanei, A. (2020). General Overview to the Research Programs in Part I. In: Sanei, A. (eds) Research and Management Practices for Conservation of the Persian Leopard in Iran. Springer, Cham. https://doi.org/10.1007/978-3-030-28003-1_1

Download citation

Publish with us

Policies and ethics