Skip to main content

Looking for Emotions on a Single EEG Signal

  • Conference paper
  • First Online:
Physiological Computing Systems (PhyCS 2016, PhyCS 2017, PhyCS 2018)

Abstract

This work aims at demonstrating that it is possible to detect emotions using a single EEG channel with an accuracy that is comparable to that obtained in studies carried out with devices that have a high number of channels. In this article the Neurosky Maindwave device, which only a single electrode at the FP1 position, the MatLab and the IBM SPSS Modeler were used to acquire, process and classify the signals respectively. It is remarkable the accuracy achieved in relation to the inexpensive hardware employed for the acquisition of the EEG signal. The result of this study allows us to determine when the brain response is more intense after undergoing the subject, in the experimentation, to the stimuli that generate those emotions. This let us decide which brain power bands are most significants and which moments are the most appropriate to carry out this detection of emotions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aftanas, L., Varlamov, A., Pavlov, S., Makhnev, V., Reva, N.: Affective picture processing: event-related synchronization within individually defined human theta band is modulated by valence dimension. Neurosci. Lett. 303(2), 115–118 (2001)

    Article  Google Scholar 

  2. Bos, D.O., et al.: EEG-based emotion recognition. The Influence of Visual and Auditory Stimuli, pp. 1–17 (2006)

    Google Scholar 

  3. Brown, L., Grundlehner, B., Penders, J.: Towards wireless emotional valence detection from EEG. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 2188–2191. IEEE (2011)

    Google Scholar 

  4. Chanel, G., Ansari-Asl, K., Pun, T.: Valence-arousal evaluation using physiological signals in an emotion recall paradigm. In: 2007 IEEE International Conference on Systems, Man and Cybernetics, pp. 2662–2667. IEEE (2007)

    Google Scholar 

  5. Corporation, I.: Manual de usuario de IBM SPSS Modeler 15, p. 280 (2012). ftp://public.dhe.ibm.com/software/analytics/spss/documentation/modeler/15.0/es/UsersGuide.pdf

  6. Crowley, K., Sliney, A., Pitt, I., Murphy, D.: Evaluating a brain-computer interface to categorise human emotional response. In: 2010 10th IEEE International Conference on Advanced Learning Technologies. pp. 276–278. IEEE (2010)

    Google Scholar 

  7. Das, R., Chatterjee, D., Das, D., Sinharay, A., Sinha, A.: Cognitive load measurement-a methodology to compare low cost commercial EEG devices. In: 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 1188–1194. IEEE (2014)

    Google Scholar 

  8. Ekman, P., et al.: Universals and cultural differences in the judgments of facial expressions of emotion. J. Pers. Soc. psychol. 53(4), 712 (1987)

    Article  Google Scholar 

  9. Enobio: http://www.neuroelectrics.com/products/enobio/

  10. Epoc, E.: www.emotiv.com

  11. Hamann, S.: Mapping discrete and dimensional emotions onto the brain: controversies and consensus. Trends Cogn. Sci. 16(9), 458–466 (2012)

    Article  Google Scholar 

  12. Levenson, R.W.: Basic emotion questions. Emot. Rev. 3(4), 379–386 (2011)

    Article  Google Scholar 

  13. Lindquist, K.A., Wager, T.D., Kober, H., Bliss-Moreau, E., Barrett, L.F.: The brain basis of emotion: a meta-analytic review. Behav. Brain Sci. 35(03), 121–143 (2012)

    Article  Google Scholar 

  14. Liu, N.H., Chiang, C.Y., Chu, H.C.: Recognizing the degree of human attention using eeg signals from mobile sensors. Sensors 13(8), 10273–10286 (2013)

    Article  Google Scholar 

  15. Liu, Y., Sourina, O.: EEG-based subject-dependent emotion recognition algorithm using fractal dimension. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC). pp. 3166–3171. October 2014. https://doi.org/10.1109/SMC.2014.6974415

  16. Liu, Y., Sourina, O., Nguyen, M.K.: Real-time EEG-based emotion recognition and its applications. In: Gavrilova, M.L., Tan, C.J.K., Sourin, A., Sourina, O. (eds.) Transactions on Computational Science XII. LNCS, vol. 6670, pp. 256–277. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22336-5_13

    Chapter  Google Scholar 

  17. Maki, Y., Sano, G., Kobashi, Y., Nakamura, T., Kanoh, M., Yamada, K.: Estimating subjective assessments using a simple biosignal sensor. In: 2012 13th ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel & Distributed Computing (SNPD), pp. 325–330. IEEE (2012)

    Google Scholar 

  18. Quesada-Tabares, R., Molina-Cantero, A.J., Gómez-González, I., Merino-Monge, M., Castro-García, J.A., Cabrera-Cabrera, R.: Emotions detection based on a single-electrode EEG device. In: Proceedings of the 4th International Conference on Physiological Computing Systems, vol. 1: PhyCS, pp. 89–95. INSTICC, SciTePress (2017). https://doi.org/10.5220/0006476300890095

  19. Russell, J.A., Barrett, L.F.: Core affect, prototypical emotional episodes, and other things called emotion: dissecting the elephant. J. Pers. Soc. Psychol. 76(5), 805 (1999)

    Article  Google Scholar 

  20. Sanei, S., Chambers, J.: EEG Signal Processing. Wiley, New Jersey (2007)

    Book  Google Scholar 

  21. Schafer, R.: What is a savitzky-golay filter? [lecture notes]. Signal Process. Mag., IEEE 28(4), 111–117 (2011). https://doi.org/10.1109/MSP.2011.941097

    Article  Google Scholar 

  22. Siamaknejad, H., Loo, C.K., Liew, W.S.: Fractal dimension methods to determine optimum EEG electrode placement for concentration estimation. In: 2014 Joint 7th International Conference on Soft Computing and Intelligent Systems (SCIS), and 15th International Symposium on Advanced Intelligent Systems (ISIS), pp. 952–955. December 2014. https://doi.org/10.1109/SCIS-ISIS.2014.7044757

  23. Sourina, O., Liu, Y.: A fractal-based algorithm of emotion recognition from EEG using arousal-valence model. In: BIOSIGNALS, pp. 209–214 (2011)

    Google Scholar 

  24. Stone, J.V.: Independent Component Analysis: A Tutorial Introduction. MIT Press, Cambridge (2004)

    Book  Google Scholar 

  25. Szibbo, D., Luo, A., Sullivan, T.J.: Removal of blink artifacts in single channel EEG. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 3511–3514 August 2012. https://doi.org/10.1109/EMBC.2012.6346723

  26. Cervantes-De la Torre, F., González-Trejo, J., Real-Ramírez, C., Hoyos-Reyes, L.: Fractal dimension algorithms and their application to time series associated with natural phenomena. In: Journal of Physics: Conference Series. vol. 475, p. 012002. IOP Publishing (2013)

    Google Scholar 

  27. Van Hal, B., Rhodes, S., Dunne, B., Bossemeyer, R.: Low-cost EEG-based sleep detection. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4571–4574. IEEE (2014)

    Google Scholar 

  28. Vytal, K., Hamann, S.: Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J. Cogn. Neurosci. 22(12), 2864–2885 (2010)

    Article  Google Scholar 

  29. Wang, Q., Sourina, O.: Real-time mental arithmetic task recognition from EEG signals. IEEE Trans. Neural Syst. Rehabil. Eng. 21(2), 225–232 (2013). https://doi.org/10.1109/TNSRE.2012.2236576

    Article  Google Scholar 

  30. Yoon, H., Park, S.W., Lee, Y.K., Jang, J.H.: Emotion recognition of serious game players using a simple brain computer interface. In: 2013 International Conference on ICT Convergence (ICTC), pp. 783–786. IEEE (2013)

    Google Scholar 

Download references

Acknowledgments

We sincerely and deeply thank the people involved in the realization of this study and the anonymous reviewers who helped us improve this document with their comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto J. Molina-Cantero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Quesada-Tabares, R. et al. (2019). Looking for Emotions on a Single EEG Signal. In: Holzinger, A., Pope, A., Plácido da Silva, H. (eds) Physiological Computing Systems. PhyCS PhyCS PhyCS 2016 2017 2018. Lecture Notes in Computer Science(), vol 10057. Springer, Cham. https://doi.org/10.1007/978-3-030-27950-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27950-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27949-3

  • Online ISBN: 978-3-030-27950-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics