Skip to main content

Exact Solutions of the Nonlinear Spinor Equations

  • Chapter
  • First Online:
Theory of Spinors and Its Application in Physics and Mechanics
  • 647 Accesses

Abstract

The physical space-time in general relativity is the four-dimensional pseudo-Riemannian space V 4 with the metric signature (+, +, +, āˆ’). We assume that the space V 4 referred to a coordinate system with the covariant vector basis and variables x i, iā€‰=ā€‰1, 2, 3, 4.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This transformation group of the vectors of the proper basis eĢ†1, eĢ†2 and eĢ†4 is related to a group of the gauge transformations of the spinor components Ļˆ A in the basis e a:

    $$\displaystyle \begin{aligned} \psi ^{\prime A } = \alpha \psi ^A-\beta \psi ^{ + A }. {} \end{aligned} $$
    (*)

    Here Ī±, Ī² are arbitrary complex numbers, satisfying the condition \(\dot \alpha \alpha - \dot \beta \beta =1 \). Transformations (*) were considered in Chap. 3 (see (3.170)).

  2. 2.

    In an arbitrary coordinate system received from synchronous system by admissible transformations (6.14), this integral has the form

    $$\displaystyle \begin{aligned} C_u^2 \, g^{ 44}\cos ^2\eta =-(u^4) ^2, \end{aligned}$$

    where g 44 is the component of the metric tensor.

  3. 3.

    To determine the integration constant in this solution it is necessary to use the second identity in (6.27) and solution (6.38), (6.39).

  4. 4.

    As known, the exponential function of the matrix argument is defined as

    $$\displaystyle \begin{aligned} \exp \alpha \gamma ^5 =I+\sum _{n=1}^{\infty} \frac 1{n\, !}\,(\alpha \gamma ^5)^n. \end{aligned}$$

    Bearing in mind that (Ī³ 5)2ā€‰=ā€‰āˆ’I, we find

    $$\displaystyle \begin{aligned} \begin{array}{rcl} &\displaystyle &\displaystyle \exp\alpha\gamma ^5=I\left( 1-\frac 1{2\, !}\,\alpha ^2 +\frac 1{4\, !}\,\alpha ^4-\cdots \right) \\ &\displaystyle &\displaystyle \qquad \qquad \quad \qquad \qquad \quad \qquad +\gamma ^5\left( \alpha -\frac 1{3\, !}\,\alpha ^3+\frac 1{5\, !}\,\alpha ^5-\cdots\right) =I\cos \alpha +\gamma ^5\sin\alpha . \end{array} \end{aligned} $$
  5. 5.

    It is easy to show that Eq. (6.70) does not invariant[83] under the Pauli group

    $$\displaystyle \begin{aligned} \psi^{\prime}{{}^A} = \alpha \psi ^A-\mathrm{i} \beta \gamma ^{5A}{}_B\psi ^{ + B }, \quad \overset.{\alpha }\alpha + \overset.{\beta }\beta =1. \end{aligned}$$

    However, as is well-known [17], quantized equations

    $$\displaystyle \begin{aligned} \gamma ^i\nabla _i\psi + \lambda: S_i\overset{*}{\gamma }{}^i\psi : =0 \end{aligned}$$

    are invariant under the Pauli group. Thus, a symmetry group of nonlinear spinor equations can change at their quantization. We note in this regard that the opinion is sometimes expressed about impossibility changing the symmetry group of the equations at them quantization (see e.g. the article [17] devoted to properties of nonlinear spinor equations).

  6. 6.

    The more general solutions of this type see in [79, 82].

  7. 7.

    A variational derivation of the differential equations used here that describe models of the magnetizable spin fluids in an electromagnetic field is contained in Appendix A. About parameters appearing in Lagrangian (6.94) and functional (6.95), see Appendix A.

  8. 8.

    If Ī› m depends only on the fluid density Ļ, there is no electromagnetic field E iā€‰=ā€‰B iā€‰=ā€‰0 and an additional equation āˆ‚ i M iā€‰=ā€‰0 is fulfilled, then the spinor equations (6.132) for \(\lambda (\rho ) = - \dfrac g{ 2mc\rho }\dfrac {d\varLambda _m }{d\rho }\) coincide with Eqs. (6.70). Therefore, Eqs. (6.70) describe a spin fluid, defined by the equations

    $$\displaystyle \begin{gathered} \partial _j\widetilde P_i{}^j=0,\quad \partial _i\rho u^i=0,\quad \partial _iM^i=0,\\ \rho \frac {d{}}{d\tau }\left( \frac 1\rho M_i\right)= g\widetilde F_{ij}M^j,\quad \widetilde F_{ij}=\overset{*}{F}_{ij}+ \frac cg\varepsilon _{ijks}u^k\partial ^s\eta ,\\ \widetilde P_i{}^j=P_i{}^j+\frac cg\big( M^su_iu^j-M_iu^su^j+ M^j\delta _i^s\big) \partial _s\eta , \end{gathered} $$

    in which P i j and \(\overset {*}{F}_{ij}\) are defined according to (6.129) (without terms with an electromagnetic field). The quantity Ī· in this case is considered as a Lagrange multiplier corresponding to the equation āˆ‚ i M iā€‰=ā€‰0; the additional terms in \(\breve P_i{ }^j \) and FĢ†ij are related with the introduction into the Lagrangian of the term cg āˆ’1 M i āˆ‚ i Ī· with the Lagrange multiplier Ī·. These equations determine hydrodynamic analogy of the theory of the elementary particles described by Eq. (6.70). In particular, for the Heisenberg equation (Ī»ā€‰=ā€‰const) we have Ī› mā€‰=ā€‰āˆ’Ī»mcg āˆ’1 Ļ 2 and for the pressure p we obtain pā€‰=ā€‰āˆ’Ī»mcg āˆ’1 Ļ 2. A condition of positivity of the pressure (or sound velocity) for gā€‰<ā€‰0 gives Ī»ā€‰>ā€‰0.

References

  1. Bagrov, V.G., Istomin, A.D., Obukhov, V.V.: Cosmological solutions of Einsteinā€“Dirac equations. Gravit. Cosmol. 2, 117ā€“121 (1996)

    ADSĀ  MATHĀ  Google ScholarĀ 

  2. DĆ¼rr, H., Heisenberg, W., Mitter, H., Schlieder, S., Yamazaki K.: Zur Theorie der Elementarteilchen. Zeitschrift fĆ¼r Naturforschung. A14, 441ā€“485 (1959)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. Golubiatnikov, A.N.: Tensor and spinor invariants of subgroups of the Lorentz group and construction of exact soltions of the Einsteinā€“Dirac equations. Ph.D. thesis, Moscow state University (1970) (in Russian)

    Google ScholarĀ 

  4. Landau, L.D., Lifshitz, E.M.: Fluid Mechanics. Pergamon Press, London; Addison-Wesley Pub. Co., Reading, MA (1987)

    ChapterĀ  Google ScholarĀ 

  5. Platania, G.: Rosania, R.: Exact Bianci type-1 solutions of the Einstein equations with Dirac field. Europhys. Lett. 37, 585ā€“590 (1997)

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  6. Radford, C.J., Klotz, A.N.: An exact solution of the Diracā€“Einstein equations. J. Phys. A: Math. Gen. 16, 317ā€“320 (1983)

    ArticleĀ  ADSĀ  Google ScholarĀ 

  7. Rybakov, Y.P., Saha, B., Shikin, G.N.: Nonlinear spinor fields in Bianchi-I-type space: exact self-consistent solutions. Izvestia VUZov Phys. 37, 40ā€“45 (1994) (in Russian)

    Google ScholarĀ 

  8. Zhelnorovich, V.A.: Exact one-dimensional nonstationary solutions of the Heysenberg equations. Dokl. Math. 17, 124ā€“127 (1976). Maik Nauka/Interperiodica Publishing (Russian Federation)

    Google ScholarĀ 

  9. Zhelnorovich, V.A.: Theory of Spinors and Its Application in Physics and Mechanics. Moscow, Nauka (1982) (in Russian)

    MATHĀ  Google ScholarĀ 

  10. Zhelnorovich, V.A.: Hydrodynamic interpretation of nonlinear relativistic theories of elementary particles. Sov. Phys. Dokl. 28, 338ā€“341 (1983)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  11. Zhelnorovich, V.A.: Invariant description of fermionic fields by scalar and vector fields. Sov. Phys. Dokl. 32, 272ā€“274 (1987)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  12. Zhelnorovich, V.A.: Dirac equations in the general theory of relativity. Sov. Phys. Dokl. 32, 726ā€“728 (1987)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  13. Zhelnorovich, V.A.: An exact general solution of the Einstein-Dirac equations in homogeneous spaces. Dokl. Math. 53, 87ā€“91 (1996)

    MATHĀ  Google ScholarĀ 

  14. Zhelnorovich, V.A.: Cosmological solutions of Einsteinā€“Dirac equations. Gravit. Cosmol. 2, 109ā€“116 (1996)

    ADSĀ  MATHĀ  Google ScholarĀ 

  15. Zhelnorovich, V.A.: Some exact solutions of the Einstein-Dirac equations with the cosmological constant. Gravit. Cosmol. 6, 1ā€“10 (2000)

    MathSciNetĀ  Google ScholarĀ 

  16. Zhelnorovich, V.A.: A general exact solution of the Einstein-Dirac equations with the cosmological term in homogeneous space. J. Exp. Theor. Phys. 98, 619ā€“628 (2004). Maik Nauka/Interperiodica Publishing (Russian Federation)

    ArticleĀ  ADSĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhelnorovich, V.A. (2019). Exact Solutions of the Nonlinear Spinor Equations. In: Theory of Spinors and Its Application in Physics and Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-27836-6_6

Download citation

Publish with us

Policies and ethics