Skip to main content

Tensor Forms of Differential Spinor Equations

  • Chapter
  • First Online:
Theory of Spinors and Its Application in Physics and Mechanics
  • 650 Accesses

Abstract

Let us consider the four-dimensional pseudo-Euclidean Minkowski space with the metric signature (+, +, +, āˆ’) referred to an Cartesian coordinate system with the variables x i and holonomic vector basis (iā€‰=ā€‰1, 2, 3, 4). The contravariant and covariant components of the metric tensor of the Minkowski space calculated in the coordinate system x i are defined by the matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The second equations in (5.53)ā€“(5.55) with some special coefficients Ļ° are obtained in a different way in [57]. Thus, the equations in [57] are the spatial part of the four-dimensional relativistically invariant vector equations (5.51), (5.52).

  2. 2.

    For the spinor equations of type (5.18), describing fields with half-integral spin (the Dirac equations, the Heisenberg equation, etc.), function \(\varLambda = \overset {\circ }\varLambda +f (\psi , \psi ^+) \) with the corresponding choice of an algebraic function f, is the Lagrangian. Formula (5.61) shows that the Lagrangian, describing fields of the half-integer spin, within the framework of known classical theories is represented in the form of sum Ī›ā€‰=ā€‰Ī› 1ā€‰+ā€‰Ī› 2ā€‰+ā€‰Ī› 3ā€‰+ā€‰Ī› int, where

    $$\displaystyle \begin{gathered} \varLambda _1=-\alpha S^i\partial _i\eta + \frac 12\alpha \big(-S_iS^i+m_1^2\eta ^2\big), \\ \varLambda _2=-\frac 12\alpha \mu ^{ ij}\partial _iu_j + \frac 14\alpha \bigg (-\frac 12\mu _{ ij}\mu ^{ij} +m_2^2u_iu^i\bigg), \\ \varLambda _3=-\frac 14\alpha \big(\dot Z^{ ij}\partial _iZ_j + Z^{ ij}\partial _i\dot Z_j\big) + \frac 14\alpha \bigg (-\frac 12\dot Z_{ij} Z^{ij} +m_3^2\dot Z_iZ^i\bigg). \end{gathered} $$

    Here m 1, m 2, m 3 are constants. Functions Ī› 1, Ī› 2, Ī› 3 with arbitrary quantities S i, u s, Ī¼ js, Ī·, Z s, Z js are the Lagrangians for the Proca equations describing, respectively, a neutral field of the spin 0, a neutral field of the spin 1 and a charged field of the spin 1. Function Ī› int does not depend on derivatives of tensor fields. A possible physical interpretation of this equality is considered in [76, 80].

  3. 3.

    To obtain Eqs. (5.65) it suffices to contract equation (5.17) with components of spintensors Ī³ i, \(\overset {*}{\gamma }_i\) and use equality (3.11) (see also following section).

  4. 4.

    Tensor equations in the components of the complex tensor C ij, equivalent to the Weyl equations, are obtained in [74, 82], see also [50, p. 221]. In order to avoid misunderstanding we recall that the spinor in the Weyl and Dirac equations is considered as the geometric object in the Minkowski space and its components are defined up to a common sign.

  5. 5.

    The second equation in (5.94) for the neutrino is obtained a different way in [56] (where the notation v iā€‰=ā€‰j iāˆ•j 4 is used). See also [44, 45, 58].

  6. 6.

    For the Dirac equations the components T ij define the Einstein energy-momentum tensor.

  7. 7.

    In the Riemannian space with the metric signature (āˆ’, āˆ’, āˆ’,ā€‰+) the spin coefficients enter into Eq. (5.123), (5.121) with the opposite sign.

  8. 8.

    The field of the spinor Ī¾ is used here only to determine the tetrad \(\breve {\boldsymbol e}^{\circ }_a\) and is not related to the Weyl equation (5.129).

  9. 9.

    The spinor equations of another form from which the Frenet-Serret equations also follow, were considered in [68].

References

  1. Bergman, P.G.: Two-component spinors in general relativity. Phys. Rev. 107, 624ā€“629 (1957)

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  2. DĆ¼rr, H., Heisenberg, W., Mitter, H., Schlieder, S., Yamazaki K.: Zur Theorie der Elementarteilchen. Zeitschrift fĆ¼r Naturforschung. A14, 441ā€“485 (1959)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  3. Golubyatnikov, A.N.: Model of the neutrino in the general theory of relativity. Sov. Phys. Dokl. 15, 451ā€“453 (1970)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  4. Kent, R.D., Szamosi, G.: Spinor equations of motion in curved space-time. Nuovo Cimento. 64 B, 67ā€“80 (1981)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  5. Kurdgelaidze, D.F.: On the nonlinear theory of elementary particles. J. Exp. Theor. Phys. 11, 339ā€“346 (1960)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  6. Lichnerowicz, A.: Spineurs harmonicues. Compt. Rend. Paris. 257, 7ā€“28 (1963)

    MATHĀ  Google ScholarĀ 

  7. Luer, C.P., Rosenbaum, M.: Spinor connections in general relativity. J. Math. Phys. 15, 1120ā€“1137 (1974)

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  8. Mickelsson, J.: On a relation between Maxwell and Dirac theories. Lett. Math. Phys. 6, 221ā€“230 (1982)

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  9. Mickelsson, J.: The vector form of the neutrino equation and the photon neutrino duality. J. Math. Phys. 26, 2346ā€“2349 (1985)

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  10. Ogievetskii, V.I., Polubarinov, I.V.: Spinors in gravitation theory. J. Exp. Theor. Phys. 21, 1093ā€“1100 (1965)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  11. Penrose, R., Rindler, W.: Spinors and Space-Time, vol. 1. Cambridge University Press, Cambridge (1986)

    BookĀ  Google ScholarĀ 

  12. Reifler, F.: A vector wave equation for neutrinos. J. Math. Phys. 25, 1088ā€“1092 (1984)

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  13. Reifler, F.: A vector model for electroweak interactions. J. Math. Phys. 26, 542ā€“550 (1985)

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  14. Reifler, F., Morris, R. Hestenesā€™ tetrad and spin connections. Int. J. Theor. Phys. 44, 1307ā€“1324 (2005)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  15. Takahashi, Y.: A Spinorization of the Frenet-Serret equation. Prog. Theor. Phys. 70, 1466ā€“1467 (1983)

    ArticleĀ  ADSĀ  MathSciNetĀ  Google ScholarĀ 

  16. Zhelnorovich, V.A.: Spinor as an invariant. J. Appl. Math. Mech. 30, 1289ā€“1300 (1966)

    ArticleĀ  Google ScholarĀ 

  17. Zhelnorovich, V.A.: Spinor field as the fusion of tensor fields. Mosc. Univ. Phys. Bull. 13, 705ā€“714 (1972)

    MathSciNetĀ  Google ScholarĀ 

  18. Zhelnorovich, V.A.: A tensor description of fields with half-integer spin. Sov. Phys. Dokl. 24, 899ā€“901 (1979)

    ADSĀ  Google ScholarĀ 

  19. Zhelnorovich, V.A.: Theory of Spinors and Its Application in Physics and Mechanics. Moscow, Nauka (1982) (in Russian)

    MATHĀ  Google ScholarĀ 

  20. Zhelnorovich, V.A.: Dirac equations in the general theory of relativity. Sov. Phys. Dokl. 32, 726ā€“728 (1987)

    ADSĀ  MathSciNetĀ  Google ScholarĀ 

  21. Zhelnorovich V.A.: Complex vector triads in the theory of spinors in Minkowski space. Sov. Phys. Dokl. 35, 245ā€“247 (1990)

    ADSĀ  MathSciNetĀ  MATHĀ  Google ScholarĀ 

  22. Zhelnorovich, V.A.: Derivatives for spinor fields in three-dimensional space and some applications. Sov. Phys. Dokl. 38, 490ā€“492 (1993)

    MathSciNetĀ  MATHĀ  Google ScholarĀ 

  23. Zhelnorovich, V.A.: On Dirac equations in the formalism of spin coefficients. Gravit. Cosmol. 3, 97ā€“99 (1997)

    ADSĀ  MATHĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhelnorovich, V.A. (2019). Tensor Forms of Differential Spinor Equations. In: Theory of Spinors and Its Application in Physics and Mechanics. Springer, Cham. https://doi.org/10.1007/978-3-030-27836-6_5

Download citation

Publish with us

Policies and ethics