Predisposing Factors for Exertional Heat Illness

  • J. Luke PryorEmail author
  • Julien D. Périard
  • Riana R. Pryor


Exertional heat illnesses constitute an array of medical conditions comprising mild (heat syncope, heat rashes, exercise-associated muscle cramping, and heat exhaustion) to life-threatening disorders (exertional heat stroke). It is imperative that individuals, practitioners, and policymakers are well informed about the risk of and predisposing factors to exertional heat illnesses. Primary among these risk factors is heat stress which is the result of the combined effects of protective equipment or clothing, metabolic rate, and environmental conditions. Heat stress is a known hazard to both physical performance and health (e.g., exertional heat illness risk). Modifiable and non-modifiable risk factors are discussed as well as preventative strategies to mitigate the influence of heat stress and exertional heat illness risk.


Hydration Thermal Exertional heat stroke Exercise Heat acclimation Thermoregulation Safety 


  1. 1.
    Rav-Acha M, Hadad E, Epstein Y, Heled Y, Moran DS. Fatal exertional heat stroke: a case series. Am J Med Sci. 2004;328(2):84–7.CrossRefGoogle Scholar
  2. 2.
    Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger CB, Gardner JW, et al. The effects of continuous hot weather training on risk of exertional heat illness. Med Sci Sports Exerc. 2005;37(1):84–90.PubMedCrossRefGoogle Scholar
  3. 3.
    Kerr ZY, Casa DJ, Marshall SW, Comstock RD. Epidemiology of exertional heat illness among U.S. high school athletes. Am J Prev Med. 2013;44(1):8–14.CrossRefGoogle Scholar
  4. 4.
    Grundstein AJ, Ramseyer C, Zhao F, Pesses JL, Akers P, Qureshi A, et al. A retrospective analysis of American football hyperthermia deaths in the United States. Int J Biometeorol. 2012;56(1):11–20.CrossRefGoogle Scholar
  5. 5.
    Tripp BL, Eberman LE, Smith MS. Exertional heat illnesses and environmental conditions during high school football practices. Am J Sports Med. 2015;43(10):2490–5.PubMedCrossRefGoogle Scholar
  6. 6.
    Yeargin SW, Kerr ZY, Casa DJ, Djoko A, Hayden R, Parsons JT, et al. Epidemiology of exertional heat illnesses in youth, high school, and college football. Med Sci Sports Exerc. 2016;48(8):1523–9.CrossRefGoogle Scholar
  7. 7.
    Leon LR, Bouchama A. Heat stroke. Compr Physiol. 2015;5(2):611–47.CrossRefGoogle Scholar
  8. 8.
    Casa DJ, DeMartini JK, Bergeron MF, Csillan D, Eichner ER, Lopez RM, et al. National Athletic Trainers’ Association position statement: exertional heat illnesses. J Athl Train. 2015;59(9):986–1000.CrossRefGoogle Scholar
  9. 9.
    Racinais S, Alonso JM, Coutts AJ, Flouris AD, Girard O, Gonzalez-Alonso J, et al. Consensus recommendations on training and competing in the heat. Scand J Med Sci Sports. 2015;25(Suppl 1):6–19.PubMedCrossRefGoogle Scholar
  10. 10.
    Pryor RR, Casa DJ, Adams WM, Belval LN, DeMartini JK, Huggins RA, et al. Maximizing athletic performance in the heat. Strength Cond J. 2013;35(6):24–33.CrossRefGoogle Scholar
  11. 11.
    Flouris AD, Schlader ZJ. Human behavioral thermoregulation during exercise in the heat. Scand J Med Sci Sports. 2015;25(Suppl 1):52–64.PubMedCrossRefGoogle Scholar
  12. 12.
    Armstrong LE, Johnson EC, Casa DJ, Ganio MS, McDermott BP, Yamamoto LM, et al. The American football uniform: uncompensable heat stress and hyperthermic exhaustion. J Athl Train. 2010;45(2):117–27.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Johnson EC, Ganio MS, Lee EC, Lopez RM, McDermott BP, Casa DJ, et al. Perceptual responses while wearing an American football uniform in the heat. J Athl Train. 2010;45(2):107–16.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Montain SJ, Sawka MN, Cadarette BS, Quigley MD, McKay JM. Physiological tolerance to uncompensable heat stress: effects of exercise intensity, protective clothing, and climate. J Appl Physiol (1985). 1994;77(1):216–22.CrossRefGoogle Scholar
  15. 15.
    Selkirk GA, McLellan TM. Influence of aerobic fitness and body fatness on tolerance to uncompensable heat stress. J Appl Physiol (1985). 2001;91(5):2055–63.CrossRefGoogle Scholar
  16. 16.
    Maresh CM, Sokmen B, Armstrong LE, Dias JC, Pryor JL, Creighton BC, et al. Repetitive box lifting performance is impaired in a hot environment: implications for altered work-rest cycles. J Occup Environ Hyg. 2014;11(7):460–8.PubMedCrossRefGoogle Scholar
  17. 17.
    Schlader ZJ, Colburn D, Hostler D. Heat strain is exacerbated on the second of consecutive days of fire suppression. Med Sci Sports Exerc. 2017;49(5):999–1005.PubMedCrossRefGoogle Scholar
  18. 18.
    Meade RD, D’Souza AW, Krishen L, Kenny GP. The physiological strain incurred during electrical utilities work over consecutive work shifts in hot environments: a case report. J Occup Environ Hyg. 2017;14(12):986–94.PubMedCrossRefGoogle Scholar
  19. 19.
    Cooper ER, Ferrara MS, Casa DJ, Powell JW, Broglio SP, Resch JE, et al. Exertional heat illness in American football players: when is the risk greatest? J Athl Train. 2016;51(8):593–600.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger CB, Gardner JW, et al. Risk factors for recruit exertional heat illness by gender and training period. Aviat Space Environ Med. 2006;77(4):415–21.PubMedGoogle Scholar
  21. 21.
    Grundstein AJ, Hosokawa Y, Casa DJ. Fatal exertional heat stroke and American football players: the need for regional heat-safety guidelines. J Athl Train. 2018;53(1):43–50.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Gagnon D, Jay O, Kenny GP. The evaporative requirement for heat balance determines whole-body sweat rate during exercise under conditions permitting full evaporation. J Physiol. 2013;591(11):2925–35.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Senay LC Jr. Effects of exercise in the heat on body fluid distribution. Med Sci Sports. 1979;11(1):42–8.PubMedGoogle Scholar
  24. 24.
    Sawka MN, Toner MM, Francesconi RP, Pandolf KB. Hypohydration and exercise: effects of heat acclimation, gender, and environment. J Appl Physiol Respir Environ Exerc Physiol. 1983;55(4):1147–53.PubMedGoogle Scholar
  25. 25.
    Brengelmann GL. Circulatory adjustments to exercise and heat stress. Annu Rev Physiol. 1983;45:191–212.PubMedCrossRefGoogle Scholar
  26. 26.
    Rowell LB, Brengelmann GL, Blackmon JR, Twiss RD, Kusumi F. Splanchnic blood flow and metabolism in heat-stressed man. J Appl Physiol. 1968;24(4):475–84.PubMedCrossRefGoogle Scholar
  27. 27.
    Ravanelli NM, Hodder SG, Havenith G, Jay O. Heart rate and body temperature responses to extreme heat and humidity with and without electric fans. JAMA. 2015;313(7):724–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Gagnon D, Romero SA, Cramer MN, Kouda K, Poh PYS, Ngo H, et al. Age modulates physiological responses during fan use under extreme heat and humidity. Med Sci Sports Exerc. 2017;49(11):2333–42.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Larose J, Boulay P, Sigal RJ, Wright HE, Kenny GP. Age-related decrements in heat dissipation during physical activity occur as early as the age of 40. PLoS One. 2013;8(12):e83148.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Kenny GP, Flouris AD, Dervis S, Friesen BJ, Sigal RJ, Malcolm J, et al. Older adults experience greater levels of thermal and cardiovascular strain during extreme heat exposures. Med Sci Sports Exerc. 2015;47(5s):497.CrossRefGoogle Scholar
  31. 31.
    Kenny GP, Poirier MP, Metsios GS, Boulay P, Dervis S, Friesen BJ, et al. Hyperthermia and cardiovascular strain during an extreme heat exposure in young versus older adults. Temperature. 2017;4(1):79–88.CrossRefGoogle Scholar
  32. 32.
    Stapleton JM, Poirier MP, Flouris AD, Boulay P, Sigal RJ, Malcolm J, et al. At what level of heat load are age-related impairments in the ability to dissipate heat evident in females? PLoS One. 2015;10(3):e0119079.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Larose J, Wright HE, Stapleton J, Sigal RJ, Boulay P, Hardcastle S, et al. Whole body heat loss is reduced in older males during short bouts of intermittent exercise. Am J Physiol Regul Integr Comp Physiol. 2013;305(6):R619–29.PubMedCrossRefGoogle Scholar
  34. 34.
    Stapleton JM, Poirier MP, Flouris AD, Boulay P, Sigal RJ, Malcolm J, et al. Aging impairs heat loss, but when does it matter? J Appl Physiol. 2014;118(3):299–309.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Armstrong LE, Maresh CM. Exercise-heat tolerance of children and adolescents. Pediatr Exerc Sci. 1995;7(3):239–52.CrossRefGoogle Scholar
  36. 36.
    Drinkwater B, Kupprat I, Denton J, Crist J, Horvath S. Response of prepubertal girls and college women to work in the heat. J Appl Physiol. 1977;43(6):1046–53.PubMedCrossRefGoogle Scholar
  37. 37.
    Maliszewski AF, Freedson PS. Is running economy different between adults and children? Pediatr Exerc Sci. 1996;8(4):351–60.CrossRefGoogle Scholar
  38. 38.
    Bergeron M, Devore C, Rice S. Policy statement—climatic heat stress and exercising children and adolescents. Pediatrics. 2011;128(3):e741–7.PubMedGoogle Scholar
  39. 39.
    Gagnon D, Kenny GP. Does sex have an independent effect on thermoeffector responses during exercise in the heat? J Physiol. 2012;590(Pt 23):5963–73.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Havenith G. Individualized model of human thermoregulation for the simulation of heat stress response. J Appl Physiol (1985). 2001;90(5):1943–54.CrossRefGoogle Scholar
  41. 41.
    Dervis S, Coombs GB, Chaseling GK, Filingeri D, Smoljanic J, Jay O. A comparison of thermoregulatory responses to exercise between mass-matched groups with large differences in body fat. J Appl Physiol (1985). 2016;120(6):615–23.CrossRefGoogle Scholar
  42. 42.
    Nelson DA, Deuster PA, O'Connor FG, Kurina LM. Timing and predictors of mild and severe heat illness among new military enlistees. Med Sci Sports Exerc. 2018;50(8):1603–12.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Deren TM, Coris EE, Casa DJ, DeMartini JK, Bain AR, Walz SM, et al. Maximum heat loss potential is lower in football linemen during an NCAA summer training camp because of lower self-generated air flow. J Strength Cond Res. 2014;28(6):1656–63.PubMedCrossRefGoogle Scholar
  44. 44.
    Flouris AD, McGinn R, Poirier MP, Louie JC, Ioannou LG, Tsoutsoubi L, et al. Screening criteria for increased susceptibility to heat stress during work or leisure in hot environments in healthy individuals aged 31–70 years. Temperature (Austin, Tex). 2018;5(1):86–99.CrossRefGoogle Scholar
  45. 45.
    Vallance JK, Dunn JG, Dunn JLC. Perfectionism, anger, and situation criticality in competitive youth ice hockey. J Sport Exerc Psychol. 2006;28(3):383–406.CrossRefGoogle Scholar
  46. 46.
    Scanlan TK, Lewthwaite R. Social psychological aspects of competition for male youth sport participants: I. predictors of competitive stress. J Sport Exerc Psychol. 1984;6(2):208–26.Google Scholar
  47. 47.
    Ommundsen Y, Roberts GC, Lemyre P-N, Miller BW. Parental and coach support or pressure on psychosocial outcomes of pediatric athletes in soccer. Clin J Sport Med. 2006;16(6):522–6.PubMedCrossRefGoogle Scholar
  48. 48.
    Jones TS, Liang AP, Kilbourne EM, Griffin MR, Patriarca PA, Wassilak SGF, et al. Morbidity and mortality associated with the July 1980 heat wave in St Louis and Kansas City, Mo. JAMA. 1982;247(24):3327–31.PubMedCrossRefGoogle Scholar
  49. 49.
    Dematte JE, O'mara K, Buescher J, Whitney CG, Forsythe S, McNamee T, et al. Near-fatal heat stroke during the 1995 heat wave in Chicago. Ann Intern Med. 1998;129(3):173–81.PubMedCrossRefGoogle Scholar
  50. 50.
    Kilbourne EM, Choi K, Jones TS, Thacker SB. Risk factors for heatstroke: a case-control study. JAMA. 1982;247(24):3332–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Casa DJ, editor. Sport and physical activity in the heat: maximizing performance and safety. Cham: Springer; 2018.Google Scholar
  52. 52.
    Stitt JT. Fever versus hyperthermia. Fed Proc. 1979;38(1):39–43.PubMedGoogle Scholar
  53. 53.
    Sonna LA, Wenger CB, Flinn S, Sheldon HK, Sawka MN, Lilly CM. Exertional heat injury and gene expression changes: a DNA microarray analysis study. J Appl Physiol (1985). 2004;96(5):1943–53.CrossRefGoogle Scholar
  54. 54.
    Armstrong LE, De Luca JP, Hubbard RW. Time course of recovery and heat acclimation ability of prior exertional heatstroke patients. Med Sci Sports Exerc. 1990;22(1):36–48.PubMedCrossRefGoogle Scholar
  55. 55.
    Hosokawa Y, Stearns RL, Casa DJ. Is heat intolerance state or trait? Sports Med. 2019;49(3):365–70.PubMedCrossRefGoogle Scholar
  56. 56.
    Reske-Nielsen C, Schlosser K, Pascucci RC, Feldman JA. Is it exertional heatstroke or something more? A case report. J Emerg Med. 2016;51(2):e1–5.PubMedCrossRefGoogle Scholar
  57. 57.
    Hosokawa Y, Casa DJ, Rosenberg H, Capacchione JF, Sagui E, Riazi S, et al. Round table on malignant hyperthermia in physically active populations: meeting proceedings. J Athl Train. 2017;52(4):377–83.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Dresoti A. The results of some investigations into the medical aspects of deep mining on the Witwatersrand. J Chem Metal Mining Soc S Afr. 1935;6:102–29.Google Scholar
  59. 59.
    Taylor NA. Human heat adaptation. Compr Physiol. 2014;4(1):325–65.PubMedCrossRefGoogle Scholar
  60. 60.
    Singer DE, Byrne C, Chen L, Shao S, Goldsmith J, Niebuhr DW. Risk of exertional heat illnesses associated with sickle cell trait in U.S. Military. Mil Med. 2018;183(7–8):e310–e7.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Harris KM, Haas TS, Eichner ER, Maron BJ. Sickle cell trait associated with sudden death in competitive athletes. Am J Cardiol. 2012;110(8):1185–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Price MJ. Thermoregulation during exercise in individuals with spinal cord injuries. Sports Med. 2006;36(10):863–79.PubMedCrossRefGoogle Scholar
  63. 63.
    Pandolf KB, Gange RW, Latzka WA, Blank IH, Kraning KK 2nd, Gonzalez RR. Human thermoregulatory responses during heat exposure after artificially induced sunburn. Am J Phys. 1992;262(4 Pt 2):R610–6.Google Scholar
  64. 64.
    Cramer MN, Moralez G, Huang MU, Crandall CG. No thermoregulatory impairment in skin graft donor sites during exercise-heat stress. Med Sci Sports Exerc. 2019;51(5):868–73.PubMedCrossRefGoogle Scholar
  65. 65.
    Wilson SB, Jennings PE, Belch JJ. Detection of microvascular impairment in type I diabetics by laser Doppler flowmetry. Clin Physiol. 1992;12(2):195–208.PubMedCrossRefGoogle Scholar
  66. 66.
    Hoeldtke RD, Bryner KD, Hoeldtke ME, Christie I, Ganser G, Hobbs G, et al. Sympathetic sudomotor disturbance in early type 1 diabetes mellitus is linked to lipid peroxidation. Metabolism. 2006;55(11):1524–31.PubMedCrossRefGoogle Scholar
  67. 67.
    Carter MR, McGinn R, Barrera-Ramirez J, Sigal RJ, Kenny GP. Impairments in local heat loss in type 1 diabetes during exercise in the heat. Med Sci Sports Exerc. 2014;46(12):2224–33.PubMedCrossRefGoogle Scholar
  68. 68.
    Kenny GP, Stapleton JM, Yardley JE, Boulay P, Sigal RJ. Older adults with type 2 diabetes store more heat during exercise. Med Sci Sports Exerc. 2013;45(10):1906–14.PubMedCrossRefGoogle Scholar
  69. 69.
    Smith HR, Dhatt GS, Melia WM, Dickinson JG. Cystic fibrosis presenting as hyponatraemic heat exhaustion. BMJ. 1995;310(6979):579–80.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Poussel M, Guerci P, Kaminsky P, Heymonet M, Roux-Buisson N, Faure J, et al. Exertional heat stroke and susceptibility to malignant hyperthermia in an athlete: evidence for a link? J Athl Train. 2015;50(11):1212–4.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Roberts WO. Determining a “do not start” temperature for a marathon on the basis of adverse outcomes. Med Sci Sports Exerc. 2010;42(2):226–32.PubMedCrossRefGoogle Scholar
  72. 72.
    Periard JD, Racinais S, Sawka MN. Adaptations and mechanisms of human heat acclimation: applications for competitive athletes and sports. Scand J Med Sci Sports. 2015;25(Suppl 1):20–38.PubMedCrossRefGoogle Scholar
  73. 73.
    Pryor JL, Pryor RR, Vandermark LW, Adams EL, VanScoy RM, Casa DJ, et al. Intermittent exercise-heat exposures and intense physical activity sustain heat acclimation adaptations. J Sci Med Sport. 2019;22(1):117–22.PubMedCrossRefGoogle Scholar
  74. 74.
    Daanen HAM, Racinais S, Periard JD. Heat acclimation decay and re-induction: a systematic review and meta-analysis. Sports Med. 2018;48(2):409–30.PubMedCrossRefGoogle Scholar
  75. 75.
    Guy JH, Deakin GB, Edwards AM, Miller CM, Pyne DB. Adaptation to hot environmental conditions: an exploration of the performance basis, procedures and future directions to optimise opportunities for elite athletes. Sports Med. 2015;45(3):303–11.PubMedCrossRefGoogle Scholar
  76. 76.
    Casa DJ, Csillan D, Armstrong LE, Baker LB, Bergeron MF, Buchanan VM, et al. Preseason heat-acclimatization guidelines for secondary school athletics. J Athl Train. 2009;44(3):332–3.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Kerr ZY, Register-Mihalik JK, Pryor RR, Pierpoint LA, Scarneo SE, Adams WM, et al. The Association between mandated preseason heat acclimatization guidelines and exertional heat illness during preseason high school American football practices. Environ Health Perspect. 2019;127(4):47003.CrossRefGoogle Scholar
  78. 78.
    Gardner JW, Kark JA, Karnei K, Sanborn JS, Gastaldo E, Burr P, et al. Risk factors predicting exertional heat illness in male Marine Corps recruits. Med Sci Sports Exerc. 1996;28(8):939–44.PubMedCrossRefGoogle Scholar
  79. 79.
    Pandolf KB, Burse RL, Goldman RF. Role of physical fitness in heat acclimatisation, decay and reinduction. Ergonomics. 1977;20(4):399–408.PubMedCrossRefGoogle Scholar
  80. 80.
    Mora-Rodriguez R. Influence of aerobic fitness on thermoregulation during exercise in the heat. Exerc Sport Sci Rev. 2012;40(2):79–87.PubMedCrossRefGoogle Scholar
  81. 81.
    Piwonka RW, Robinson S, Gay VL, Manalis RS. Preacclimatization of men to heat by training. J Appl Physiol. 1965;20(3):379–83.PubMedCrossRefGoogle Scholar
  82. 82.
    Lamarche DT, Notley SR, Poirier MP, Kenny GP. Fitness-related differences in the rate of whole-body total heat loss in exercising young healthy women are heat-load dependent. Exp Physiol. 2018;103(3):312–7.PubMedCrossRefGoogle Scholar
  83. 83.
    Mora-Rodriguez R, Del Coso J, Hamouti N, Estevez E, Ortega JF. Aerobically trained individuals have greater increases in rectal temperature than untrained ones during exercise in the heat at similar relative intensities. Eur J Appl Physiol. 2010;109(5):973–81.PubMedCrossRefGoogle Scholar
  84. 84.
    Armstrong LE, Pandolf KB. Physical training, cardiorespiratory physical fitness and exercise-heat tolerance. In: Pandolf KB, Sawka MN, Gonzalez RR, editors. Human performance physiology and environmental medicine at terrestrial extremes. Indianapolis: Benchmark Press; 1988. p. 199–226.Google Scholar
  85. 85.
    Williams CJ, Williams MG, Eynon N, Ashton KJ, Little JP, Wisloff U, et al. Genes to predict VO2max trainability: a systematic review. BMC Genomics. 2017;18(Suppl 8):831.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol (1985). 1992;73(4):1340–50.CrossRefGoogle Scholar
  87. 87.
    Gonzalez-Alonso J. Separate and combined influences of dehydration and hyperthermia on cardiovascular responses to exercise. Int J Sports Med. 1998;19(Suppl 2):S111–4.PubMedCrossRefGoogle Scholar
  88. 88.
    Buono MJ, Wall AJ. Effect of hypohydration on core temperature during exercise in temperate and hot environments. Pflugers Arch. 2000;440(3):476–80.PubMedCrossRefGoogle Scholar
  89. 89.
    Gisolfi CV, Copping JR. Thermal effects of prolonged treadmill exercise in the heat. Med Sci Sports. 1974;6(2):108–13.PubMedGoogle Scholar
  90. 90.
    Adams WM, Ferraro EM, Huggins RA, Casa DJ. Influence of body mass loss on changes in heart rate during exercise in the heat: a systematic review. J Strength Cond Res. 2014;28(8):2380–9.PubMedCrossRefGoogle Scholar
  91. 91.
    Sawka MN, Young AJ, Francesconi RP, Muza SR, Pandolf KB. Thermoregulatory and blood responses during exercise at graded hypohydration levels. J Appl Physiol (1985). 1985;59(5):1394–401.CrossRefGoogle Scholar
  92. 92.
    Armstrong LE, Maresh CM, Gabaree CV, Hoffman JR, Kavouras SA, Kenefick RW, et al. Thermal and circulatory responses during exercise: effects of hypohydration, dehydration, and water intake. J Appl Physiol (1985). 1997;82(6):2028–35.CrossRefGoogle Scholar
  93. 93.
    Gonzalez-Alonso J, Mora-Rodriguez R, Coyle EF. Stroke volume during exercise: interaction of environment and hydration. Am J Physiol Heart Circ Physiol. 2000;278(2):H321–30.PubMedCrossRefGoogle Scholar
  94. 94.
    Judelson DA, Maresh CM, Anderson JM, Armstrong LE, Casa DJ, Kraemer WJ, et al. Hydration and muscular performance: does fluid balance affect strength, power and high-intensity endurance? Sports Med. 2007;37(10):907–21.PubMedCrossRefGoogle Scholar
  95. 95.
    Kenefick RW, Cheuvront SN. Hydration for recreational sport and physical activity. Nutr Rev. 2012;70(Suppl 2):S137–42.PubMedCrossRefGoogle Scholar
  96. 96.
    Goodman SPJ, Moreland AT, Marino FE. The effect of active hypohydration on cognitive function: a systematic review and meta-analysis. Physiol Behav. 2019;204:297–308.PubMedCrossRefGoogle Scholar
  97. 97.
    Baker LB, Dougherty KA, Chow M, Kenney WL. Progressive dehydration causes a progressive decline in basketball skill performance. Med Sci Sports Exerc. 2007;39(7):1114–23.PubMedCrossRefGoogle Scholar
  98. 98.
    Yoda T, Crawshaw LI, Nakamura M, Saito K, Konishi A, Nagashima K, et al. Effects of alcohol on thermoregulation during mild heat exposure in humans. Alcohol. 2005;36(3):195–200.PubMedCrossRefGoogle Scholar
  99. 99.
    Kalant H, Lê AD. Effects of ethanol on thermoregulation. Pharmacol Ther. 1983;23(3):313–64.PubMedCrossRefGoogle Scholar
  100. 100.
    Hobson RM, Maughan RJ. Hydration status and the diuretic action of a small dose of alcohol. Alcohol Alcohol. 2010;45(4):366–73.PubMedCrossRefGoogle Scholar
  101. 101.
    Shirreffs SM, Maughan RJ. Restoration of fluid balance after exercise-induced dehydration: effects of alcohol consumption. J Appl Physiol (1985). 1997;83(4):1152–8.CrossRefGoogle Scholar
  102. 102.
    Dewasmes G, Bothorel B, Hoeft A, Candas V. Regulation of local sweating in sleep-deprived exercising humans. Eur J Appl Physiol Occup Physiol. 1993;66(6):542–6.PubMedCrossRefGoogle Scholar
  103. 103.
    Tokizawa K, Sawada S, Tai T, Lu J, Oka T, Yasuda A, et al. Effects of partial sleep restriction and subsequent daytime napping on prolonged exertional heat strain. Occup Environ Med. 2015;72(7):521–8.PubMedCrossRefGoogle Scholar
  104. 104.
    Muginshtein-Simkovitch E, Dagan Y, Cohen-Zion M, Waissengrin B, Ketko I, Heled Y. Heat tolerance after total and partial acute sleep deprivation. Chronobiol Int. 2015;32(5):717–24.PubMedCrossRefGoogle Scholar
  105. 105.
    Kolka MA, Stephenson LA. Exercise thermoregulation after prolonged wakefulness. J Appl Physiol (1985). 1988;64(4):1575–9.CrossRefGoogle Scholar
  106. 106.
    Vaara J, Kyrolainen H, Koivu M, Tulppo M, Finni T. The effect of 60-h sleep deprivation on cardiovascular regulation and body temperature. Eur J Appl Physiol. 2009;105(3):439–44.PubMedCrossRefGoogle Scholar
  107. 107.
    Oliver SJ, Costa RJ, Laing SJ, Bilzon JL, Walsh NP. One night of sleep deprivation decreases treadmill endurance performance. Eur J Appl Physiol. 2009;107(2):155–61.PubMedCrossRefGoogle Scholar
  108. 108.
    Moore JP, Harper Smith AD, Di Felice U, Walsh NP. Three nights of sleep deprivation does not alter thermal strain during exercise in the heat. Eur J Appl Physiol. 2013;113(9):2353–60.PubMedCrossRefGoogle Scholar
  109. 109.
    Irwin MR, Olmstead R, Carroll JE. Sleep disturbance, sleep duration, and inflammation: a systematic review and meta-analysis of cohort studies and experimental sleep deprivation. Biol Psychiatry. 2016;80(1):40–52.PubMedCrossRefGoogle Scholar
  110. 110.
    Wolkow A, Aisbett B, Reynolds J, Ferguson SA, Main LC. The impact of sleep restriction while performing simulated physical firefighting work on cortisol and heart rate responses. Int Arch Occup Environ Health. 2016;89(3):461–75.PubMedCrossRefGoogle Scholar
  111. 111.
    Mougin F, Simon-Rigaud ML, Davenne D, Renaud A, Garnier A, Kantelip JP, et al. Effects of sleep disturbances on subsequent physical performance. Eur J Appl Physiol Occup Physiol. 1991;63(2):77–82.PubMedCrossRefGoogle Scholar
  112. 112.
    Ely BR, Ely MR, Cheuvront SN. Marginal effects of a large caffeine dose on heat balance during exercise-heat stress. Int J Sport Nutr Exerc Metab. 2011;21(1):65–70.PubMedCrossRefGoogle Scholar
  113. 113.
    Twycross-Lewis R, Kilduff LP, Wang G, Pitsiladis YP. The effects of creatine supplementation on thermoregulation and physical (cognitive) performance: a review and future prospects. Amino Acids. 2016;48(8):1843–55.PubMedCrossRefGoogle Scholar
  114. 114.
    Crandall CG, Vongpatanasin W, Victor RG. Mechanism of cocaine-induced hyperthermia in humans. Ann Intern Med. 2002;136(11):785–91.PubMedCrossRefGoogle Scholar
  115. 115.
    Sawka MN, Leon LR, Montain SJ, Sonna LA. Integrated physiological mechanisms of exercise performance, adaptation, and maladaptation to heat stress. Compr Physiol. 2011;1(4):1883–928.PubMedCrossRefGoogle Scholar
  116. 116.
    Pryor JL, Johnson EC, Roberts WO, Pryor RR. Application of evidence-based recommendations for heat acclimation: individual and team sport perspectives. Temperature. 2019;6(1):37–49.CrossRefGoogle Scholar
  117. 117.
    Saunders PU, Garvican-Lewis LA, Chapman RF, Periard JD. Special environments: altitude and heat. Int J Sport Nutr Exerc Metab. 2019;29(2):210–9.PubMedCrossRefGoogle Scholar
  118. 118.
    Periard JD, Caillaud C, Thompson MW. The role of aerobic fitness and exercise intensity on endurance performance in uncompensable heat stress conditions. Eur J Appl Physiol. 2012;112(6):1989–99.PubMedCrossRefGoogle Scholar
  119. 119.
    Sawka MN, Young AJ, Latzka WA, Neufer PD, Quigley MD, Pandolf KB. Human tolerance to heat strain during exercise: influence of hydration. J Appl Physiol (1985). 1992;73(1):368–75.CrossRefGoogle Scholar
  120. 120.
    Shvartz E, Shapiro Y, Magazanik A, Meroz A, Birnfeld H, Mechtinger A, et al. Heat acclimation, physical fitness, and responses to exercise in temperate and hot environments. J Appl Physiol Respir Environ Exerc Physiol. 1977;43(4):678–83.PubMedGoogle Scholar
  121. 121.
    Avellini BA, Shapiro Y, Fortney SM, Wenger CB, Pandolf KB. Effects on heat tolerance of physical training in water and on land. J Appl Physiol Respir Environ Exerc Physiol. 1982;53(5):1291–8.PubMedGoogle Scholar
  122. 122.
    Nadel ER, Pandolf KB, Roberts MF, Stolwijk JA. Mechanisms of thermal acclimation to exercise and heat. J Appl Physiol. 1974;37(4):515–20.PubMedCrossRefGoogle Scholar
  123. 123.
    EFSA Panel on Dietetic Prfoducts, Nutrition, and Allergies (NDA). Scientific opinion on dietary reference values for water. EFSA J. 2010;8(3):1459. Scholar
  124. 124.
    Kenefick RW. Drinking strategies: planned drinking versus drinking to thirst. Sports Med. 2018;48(Suppl 1):31–7.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    McDermott BP, Anderson SA, Armstrong LE, Casa DJ, Cheuvront SN, Cooper L, et al. National Athletic Trainers’ Association position statement: fluid replacement for the physically active. J Athl Train. 2017;52(9):877–95.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Bergeron MF. Muscle cramps during exercise-is it fatigue or electrolyte deficit? Curr Sports Med Rep. 2008;7(4):S50–S5.CrossRefGoogle Scholar
  127. 127.
    Sawka MN, Burke LM, Eichner ER, Maughan RJ, Montain SJ, Stachenfeld NS. American College of Sports Medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc. 2007;39(2):377–90.PubMedCrossRefGoogle Scholar
  128. 128.
    Panel on Dietary Reference Intakes for Electrolytes and Water. Institute of Medicine Dietary reference intakes for water, potassium, sodium, chloride, and sulfate: National Academies Press; 2005. Accessed 15 May 2019.
  129. 129.
    Burke LM, Hawley JA, Wong SH, Jeukendrup AE. Carbohydrates for training and competition. J Sports Sci. 2011;29(Suppl 1):S17–27.PubMedCrossRefGoogle Scholar
  130. 130.
    Shirreffs SM. Restoration of fluid and electrolyte balance after exercise. Can J Appl Physiol. 2001;26(Suppl):S228–35.PubMedCrossRefGoogle Scholar
  131. 131.
    Beelen M, Burke LM, Gibala MJ, van Loon LJ. Nutritional strategies to promote postexercise recovery. Int J Sport Nutr Exerc Metab. 2010;20(6):515–32.PubMedCrossRefGoogle Scholar
  132. 132.
    Adams WM, Hosokawa Y, Casa DJ. Body-cooling paradigm in sport: maximizing safety and performance during competition. J Sport Rehabil. 2016;25(4):382–94.PubMedCrossRefGoogle Scholar
  133. 133.
    Bongers CC, Thijssen DH, Veltmeijer MT, Hopman MT, Eijsvogels TM. Precooling and percooling (cooling during exercise) both improve performance in the heat: a meta-analytical review. Br J Sports Med. 2015;49(6):377–84.PubMedCrossRefGoogle Scholar
  134. 134.
    Stevens CJ, Taylor L, Dascombe BJ. Cooling during exercise: an overlooked strategy for enhancing endurance performance in the heat. Sports Med. 2017;47(5):829–41.PubMedCrossRefGoogle Scholar
  135. 135.
    Morris NB, Jay O. To drink or to pour: How should athletes use water to cool themselves? Temperature (Austin, Tex). 2016;3(2):191–4.CrossRefGoogle Scholar
  136. 136.
    Armstrong LE, Casa DJ, Millard-Stafford M, Moran DS, Pyne SW, Roberts WO. American College of Sports Medicine position stand. Exertional heat illness during training and competition. Med Sci Sports Exerc. 2007;39(3):556–72.CrossRefGoogle Scholar
  137. 137.
    Grundstein A, Williams C, Phan M, Cooper E. Regional heat safety thresholds for athletics in the contiguous United States. Appl Geogr. 2015;56:55–60.CrossRefGoogle Scholar
  138. 138.
    Kark JA, Burr PQ, Wenger CB, Gastaldo E, Gardner JW. Exertional heat illness in Marine Corps recruit training. Aviat Space Environ Med. 1996;67(4):354–60.PubMedGoogle Scholar
  139. 139.
    Grundstein A, Cooper E, Ferrara M, Knox JA. The geography of extreme heat hazards for American football players. Appl Geogr. 2014;46:53–60.CrossRefGoogle Scholar
  140. 140.
    Fiala D, Havenith G, Brode P, Kampmann B, Jendritzky G. UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol. 2012;56(3):429–41.PubMedCrossRefGoogle Scholar
  141. 141.
    Bröde P, Fiala D, Kampmann B. Considering varying clothing, activities and exposure times with the Universal Thermal Climate Index UTCI. Proceedings 21st International Congress of Biometeorology, 3–7 Sept, 2017, Durham University, UK.Google Scholar
  142. 142.
    Roberts WO. Exertional heat stroke during a cool weather marathon: a case study. Med Sci Sports Exerc. 2006;38(7):1197–203.CrossRefGoogle Scholar
  143. 143.
    Gosling CM, Gabbe BJ, McGivern J, Forbes AB. The incidence of heat casualties in sprint triathlon: the tale of two Melbourne race events. J Sci Med Sport. 2008;11(1):52–7.CrossRefGoogle Scholar
  144. 144.
    Eberman LE, Cleary MA. Development of a heat-illness screening instrument using the Delphi panel technique. J Athl Train. 2011;46(2):176–84.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • J. Luke Pryor
    • 1
    Email author
  • Julien D. Périard
    • 2
  • Riana R. Pryor
    • 1
  1. 1.Exercise and Nutrition SciencesUniversity at BuffaloBuffaloUSA
  2. 2.Research Institute for Sport and Exercise, University of CanberraBruceAustralia

Personalised recommendations