Skip to main content

64Cu-Radiopharmaceuticals

  • Chapter
  • First Online:
Radiopharmaceuticals

Abstract

Copper (Cu) is a transition metal with atomic number 29, involved in several physiological processes, being cofactor for numerous enzymes, such as the “Cu/Zn superoxide dismutase,” “cytochrome-C-oxidase,” “tyrosinase,” “ceruloplasmin,” and other proteins. Moreover, the Cu is essential for respiration, iron transport and metabolism, cell growth, and hemostasis [1, 2]. It may also play a role in cancer development and progression, acting as neo-angiogenetic promoter [3, 4].

Authors declare they have obtained permission for any previously published material used in their chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F-FDG:

18F-fluorodeoxyglucose

18F-MISO:

18F-Misonidazole

64Cu-ATSM:

Diacetyl-bis-N4-methylthiosemicarbazone

64Cu-DOTANOC:

64Cu-tetraazacyclododecane-octreotid

64Cu-DOTATATE:

64Cu-tetraazacyclododecane-octreotate

64Cu-PSMA:

64Cu-prostate-specific membrane antigen

68Ga-DOTATOC:

68Ga-tetraazacyclododecane-octreotide

BFC:

Bi-functional-chelator

CTR1:

Human copper transporter 1

Cu:

Copper

DNA:

Deoxyribonucleic acid

DOTA:

Tetraazacyclododecane-tetraacetic acid

GMP:

Good manufacture practice

LET:

Linear energy transfer

NET:

Neuroendocrine tumors

PET/CT:

Positron emission tomography/computed tomography

PSMA:

Prostate-specific membrane antigen

RRT:

Receptors radiation therapy

SPECT/CT:

Single photon emission computed tomography/computed tomography

SSTR:

Somatostatin receptor

References

  1. Niccoli Asabella A, Cascini GL, Altini C, et al. The copper radioisotopes: a systematic review with special interest to 64Cu. Biomed Res Int. 2014;2014:786463.

    PubMed  PubMed Central  Google Scholar 

  2. Puig S, Thiele DJ. Molecular mechanisms of copper uptake and distribution. Curr Opin Chem Biol. 2002;6:171–80.

    Article  CAS  PubMed  Google Scholar 

  3. Reilly W, McAuslan BR. Matrix control of tumor angiogenesis. Adv Exp Med Biol. 1988;242:221–7.

    Article  CAS  PubMed  Google Scholar 

  4. Finney L, Vogt S, Fukai T, et al. Copper and angiogenesis: unravelling a relationship key to cancer progression. Clin Exp Pharmacol Physiol. 2009;36:88–94.

    Article  CAS  PubMed  Google Scholar 

  5. Blower PJ, Lewis JS, Zweit J. Copper radionuclides and radiopharmaceuticals in nuclear medicine. Nucl Med Biol. 1996;23:957–80.

    Article  CAS  PubMed  Google Scholar 

  6. Szymański P, Frączek T, Markowicz M, et al. Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals. 2012;25:1089–112.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Evangelista L, Luigi M, Cascini GL. New issues for copper-64: from precursor to innovative PET tracers in clinical oncology. Curr Radiopharm. 2013;6:117–23.

    Article  CAS  PubMed  Google Scholar 

  8. Kassis AI, Adelstein SJ. Radiobiologic principles in radionuclide therapy. J Nucl Med. 2005;46:4s–12s.

    PubMed  Google Scholar 

  9. George AM, Sabovljev SA, Hart LE, et al. DNA quaternary structure in the radiation sensitivity of human lymphocytes—a proposed role of copper. Br J Cancer Suppl. 1987;8:141–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Frindel M, Camus N, Rauscher A, et al. Radiolabeling of HTE1PA: a new monopicolinate cyclam derivative for Cu-64 phenotypic imaging. In vitro and in vivo stability studies in mice. Nucl Med Biol. 2014;41:e49–57.

    Article  CAS  PubMed  Google Scholar 

  11. Banerjee SR, Pullambhatla M, Foss CA, et al. 64Cu-labeled inhibitors of prostate-specific membrane antigen for PET imaging of prostate cancer. J Med Chem. 2014;27:6.

    Google Scholar 

  12. Cai Z, Anderson CJ. Chelators for copper radionuclides in positron emission tomography radiopharmaceuticals. J Labelled Comp Radiopharm. 2014;57:224–30.

    Article  CAS  PubMed  Google Scholar 

  13. Anderson CJ, Ferdani R. Copper-64 radiopharmaceuticals for PET imaging of cancer: advances in preclinical and clinical research. Cancer Biother Radiopharm. 2009;24:379–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sweat SD, Pacelli A, Murphy GP, et al. Prostate-specific membrane antigen expression is greatest in prostate adenocarcinoma and lymph node metastases. Urology. 1998;52:637–40.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Y, Li J, Xu X, et al. 64Cu-based Radiopharmaceuticals in Molecular Imaging. Technol Cancer Res Treat. 2019;1:1533033819830758.

    Google Scholar 

  16. Eder M, Eisenhut M, Babich J, et al. PSMA as a target for radiolabelled small molecules. Eur J Nucl Med Mol Imaging. 2013;40:819–23.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cui C, Hanyu M, Hatori A, et al. Synthesis and evaluation of [64Cu]PSMA-617 targeted for prostate-specific membrane antigen in prostate cancer. Am J Nucl Med Mol Imaging. 2017;7:40–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Berliner C, Tienken M, Frenzel T, et al. Detection rate of PET/CT in patients with biochemical relapse of prostate cancer using 68Ga-PSMA;T and comparison with published data of 68Ga PSMA HBED-CC. Eur J Nucl Med Mol Imaging. 2017;44:670–7.

    Article  CAS  PubMed  Google Scholar 

  19. Buemel C, Krebs M, Polat B, et al. 68Ga-PSMA-PET/CT in patients with biochemical prostate cancer recurrence and negative 18F-choline-PET/CT. Clin Nucl Med. 2016;41:515–21.

    Article  Google Scholar 

  20. Grubmüller B, Baum RP, Capasso E, et al. 64Cu-PSMA-617 PET/CT imaging of prostate adenocarcinoma: first in-human studies. Cancer Biother Radiopharm. 2016;31:277–86.

    Article  PubMed  CAS  Google Scholar 

  21. Calabria F, Gallo G, Schillaci O, et al. Bio-distribution, imaging protocols and diagnostic accuracy of PET with tracers of lipogenesis in imaging prostate cancer: a comparison between 11C-choline, 18F-fluoroethylcholine and 18F-methylcholine. Curr Pharm Des. 2015;21:4738–47.

    Article  CAS  PubMed  Google Scholar 

  22. Cantiello F, Crocerossa F, Russo GI, et al. Comparison between 64Cu-PSMA-617 PET/CT and 18F-choline PET/CT imaging in early diagnosis of prostate cancer biochemical recurrence. Clin Genitourin Cancer. 2018;16:385–91.

    Article  PubMed  Google Scholar 

  23. Huang YT, Fong W, Thomas P. Rectal carcinoma on 68Ga-PSMA PET/CT. Clin Nucl Med. 2016;41:167–8.

    Article  CAS  Google Scholar 

  24. Krohn T, Verburg FA, Pufe T, et al. [(68)Ga]PSMA-HBED uptake mimicking lymph node metastasis in coeliac ganglia: an important pitfall in clinical practice. Eur J Nucl Med Mol Imaging. 2015;42:210–4.

    Article  PubMed  Google Scholar 

  25. Calabria F, Gangemi V, Gullà D, et al. 64Cu-PSMA uptake in meningioma: a potential pitfall of a promising radiotracer. Rev Esp Med Nucl Imagen Mol. 2017;36:335–6.

    CAS  PubMed  Google Scholar 

  26. Bilgin R, Ergül N, Çermik TF. Incidental meningioma mimicking metastasis of prostate adenocarcinoma in 68Ga-Labeled PSMA Ligand PET/CT. Clin Nucl Med. 2016;41:956–8.

    Article  PubMed  Google Scholar 

  27. Calabria F. Fifty shades of meningioma: challenges and perspectives of different PET molecular probes. Clin Transl Imaging. 2017;5:403–5.

    Article  Google Scholar 

  28. Calabria F, Pichler R, Leporace M et al. 68Ga/64Cu PSMA bio-distribution in prostate cancer patients: potential pitfalls for different tracers. Curr Radiopharm. 2019 [Epub ahead of print].

    Google Scholar 

  29. Fallanca F, Giovacchini G, Picchio M, et al. Incidental detection by [11C]choline PET/CT of meningiomas in prostate cancer patients. Q J Nucl Med Mol Imaging. 2009;53:417–21.

    CAS  PubMed  Google Scholar 

  30. Strele-Trieb P, Dunzinger A, Sonnberger M, et al. Uptake of 68Ga-prostate-specific membrane antigen PET in Adrenal Gland: a potential pitfall. Clin Nucl Med. 2017;43:50–1.

    Article  Google Scholar 

  31. Keidar Z, Gill R, Goshen E, et al. 68Ga-PSMA PET/CT in prostate cancer patients - patterns of disease, benign findings and pitfalls. Cancer Imaging. 2018;18:39.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jochumsen MR, Bouchelouche K. Intense 68Ga-PSMA uptake in diverticulum of the sigmoid colon. Clin Nucl Med. 2018;43:110–1.

    Article  PubMed  Google Scholar 

  33. Calabria FF, Chiaravalloti A, Jaffrain-Rea ML, et al. 18F-DOPA PET/CT physiological distribution and pitfalls: experience in 215 patients. Clin Nucl Med. 2016;41:753–60.

    Article  PubMed  Google Scholar 

  34. Calabria F, Chiaravalloti A, Cicciò C, et al. PET/CT with 18F-choline: physiological whole bio-distribution in male and female subjects and diagnostic pitfalls on 1000 prostate cancer patients: 18F-choline PET/CT bio-distribution and pitfalls. A southern Italian experience. Nucl Med Biol. 2017;51:40–54.

    Article  CAS  PubMed  Google Scholar 

  35. Fujibayashi Y, Taniuchi H, Yonekura Y, et al. Copper-62-ATSM: a new hypoxia imaging agent with high membrane permeability and low redox potential. J Nucl Med. 1997;38:1155–60.

    CAS  PubMed  Google Scholar 

  36. Padhani AR, Krohn KA, Lewis JS, et al. Imaging oxygenation of human tumours. Eur Radiol. 2007;17:861–72.

    Article  PubMed  Google Scholar 

  37. Yuan H, Schroeder T, Bowsher JE, et al. Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med. 2006;47:989–98.

    CAS  PubMed  Google Scholar 

  38. Liu J, Hajibeigi A, Ren G, et al. Retention of the radiotracers 64Cu-ATSM and 64Cu-PTSM in human and murine tumors is influenced by MDR1 protein expression. J Nucl Med. 2009;50:1332–9.

    Article  CAS  PubMed  Google Scholar 

  39. Yoshii Y, Furukawa T, Kiyono Y, et al. Internal radiotherapy with copper-64-diacetyl-bis (N4-methylthiosemicarbazone) reduces CD133+ highly tumorigenic cells and metastatic ability of mouse colon carcinoma. Nucl Med Biol. 2011;38:151–7.

    Article  CAS  PubMed  Google Scholar 

  40. Yoshii Y, Yoneda M, Ikawa M, et al. Radiolabeled Cu-ATSM as a novel indicator of overreduced intracellular state due to mitochondrial dysfunction: studies with mitochondrial DNA-less ρ0 cells and cybrids carrying MELAS mitochondrial DNA mutation. Nucl Med Biol. 2012;39:177–85.

    Article  CAS  PubMed  Google Scholar 

  41. Nehmeh SA, Lee NY, Schröder H, et al. Reproducibility of intratumor distribution of (18)F-fluoromisonidazole in head and neck cancer. Int J Radiat Oncol Biol Phys. 2008;70:235–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McCall KC, Humm JL, Bartlett R, et al. Copper-64-diacetyl-bis(N(4)-methylthiosemicarbazone) pharmacokinetics in FaDu xenograft tumors and correlation with microscopic markers of hypoxia. Int J Radiat Oncol Biol Phys. 2012;84:e393–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Carlin S, Zhang H, Reese M, et al. A comparison of the imaging characteristics and microregional distribution of 4 hypoxia PET tracers. J Nucl Med. 2014;55:515–21.

    Article  CAS  PubMed  Google Scholar 

  44. Tateishi K, Tateishi U, Sato M, et al. Application of 62Cu-diacetyl-bis (N4-methylthiosemicarbazone) PET imaging to predict highly malignant tumor grades and hypoxia-inducible factor-1α expression in patients with glioma. AJNR Am J Neuroradiol. 2013;34:98–9.

    Article  Google Scholar 

  45. Minagawa Y, Shizukuishi K, Koike I, et al. Assessment of tumor hypoxia by 62Cu-ATSM PET/CT as a predictor of response in head and neck cancer: a pilot study. Ann Nucl Med. 2011;25:339–45.

    Article  PubMed  Google Scholar 

  46. Dehdashti F, Mintun MA, Lewis JS, et al. In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging. 2003;30:844–50.

    Article  CAS  PubMed  Google Scholar 

  47. Lopci E, Grassi I, Rubello D, et al. Prognostic evaluation of disease outcome in solid tumors investigated with 64Cu-ATSM PET/CT. Clin Nucl Med. 2016;41:e87–92.

    Article  PubMed  Google Scholar 

  48. Barrio M, Czernin J, Fanti S, et al. The impact of SSTR-directed PET/CT on the management of patients with neuroendocrine tumor: A systematic review and meta-analysis. J Nucl Med. 2017;58:756–61.

    Article  PubMed  Google Scholar 

  49. Hanaoka H, Tominaga H, Yamada K, et al. Evaluation of (64)Cu-labeled DOTA-D-Phe(1)-Tyr (3)-octreotide ((64)Cu-DOTA-TOC) for imaging somatostatin receptor-expressing tumors. Ann Nucl Med. 2009;23:559–667.

    Article  CAS  PubMed  Google Scholar 

  50. Anderson CJ, Pajeau TS, Edwards WB, et al. In vitro and in vivo evaluation of copper-64-octreotide conjugates. J Nucl Med. 1995;36:2315–25.

    CAS  PubMed  Google Scholar 

  51. Pfeifer A, Knigge U, Mortensen J, et al. Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med. 2012;53:1207–15.

    Article  CAS  PubMed  Google Scholar 

  52. Pfeifer A, Knigge U, Binderup T, et al. 64Cu-DOTATATE PET for neuroendocrine tumors: a prospective head-to-head comparison with 111In-DTPA-octreotide in 112 patients. J Nucl Med. 2015;56:847–54.

    Article  CAS  PubMed  Google Scholar 

  53. Johnbeck CB, Knigge U, Loft A, et al. Head-to-head comparison of 64Cu-DOTATATE and 68Ga-DOTATOC PET/CT: a prospective study of 59 patients with neuroendocrine tumors. J Nucl Med. 2017;58:451–7.

    Article  CAS  PubMed  Google Scholar 

  54. Bahri H, Laurence L, Edeline J, et al. High prognostic value of 18F-FDG PET for metastatic gastroenteropancreatic neuroendocrine tumors: a long-term evaluation. J Nucl Med. 2014;55:1786–90.

    Article  CAS  PubMed  Google Scholar 

  55. Bhatkar D, Utpat K, Basu S, et al. Dual tracer PET imaging (68Ga-DOTATATE and 18F-FDG) features in pulmonary carcinoid: correlation with tumor proliferation index. Indian J Nucl Med. 2017;32:39–41.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pedersen SF, Sandholt BV, Keller SH, et al. 64Cu-DOTATATE PET/MRI for detection of activated macrophages in carotid atherosclerotic plaques: studies in patients undergoing endarterectomy. Arterioscler Thromb Vasc Biol. 2015;35:1696–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Calabria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calabria, F. et al. (2020). 64Cu-Radiopharmaceuticals. In: Calabria, F., Schillaci, O. (eds) Radiopharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-27779-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27779-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27778-9

  • Online ISBN: 978-3-030-27779-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics