Skip to main content

Somatostatin Receptor Analogs (68Ga-DOTATOC, 68Ga-DOTANOC, 68Ga-DOTATATE)

  • Chapter
  • First Online:
Radiopharmaceuticals

Abstract

Neuroendocrine tumors (NETs) are rare neoplasms originating from neuroendocrine cells and characterized by the property of producing hormones and biogenic amines. NETs can present an indolent clinical course, thus diagnosis may be delayed when disease is at an advanced stage. A number of different techniques can be applied for NET diagnosis and localization: magnetic resonance, contrast-enhanced computed tomography, gastrointestinal endoscopy, and ultrasonography. Since NETs are known to overexpress somatostatin receptors, somatostatin receptor scintigraphy (SRS) with 111In-pentetreotide has been widely used for NET diagnosis, staging and monitoring response to treatment. Nevertheless, conventional scintigraphic approach presents some limitations due to poor spatial resolution. Positron emission tomography (PET) with 18F-fluorodeoxyglucose has a limited role for the imaging of NETs that are slow-growing neoplasms with reduced expression of glucose transporter receptors. To overcome these drawbacks, three different radiopharmaceuticals binding to somatostatin receptors have been introduced: 68Ga-DOTA-Phe1-Tyr3-Octreotide (TOC), 68Ga-DOTA-NaI3-Octreotide (NOC), and 68Ga-DOTA-Tyr3-Octreotate (TATE). This chapter is aimed to review these 68Ga-DOTA-compounds with particular emphasis on their synthesis, pharmacokinetic/pharmacodynamic properties and on the clinical application in NETs diagnosis and follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CT:

Computed tomography

DOTA:

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid

FDG:

18fluorodeoxyglucose

MRI:

Magnetic resonance imaging

NET:

Neuroendocrine tumors

PET:

Positron emission tomography

PRRT:

Peptide receptor radionuclide therapy

SRS:

Somatostatin receptor scintigraphy

US:

Ultrasonography

References

  1. Wadas TJ, Wong EH, Weisman GR, et al. Coordinating radiometals of copper, gallium, indium, yttrium, and zirconium for PET and SPECT imaging of disease. Chem Rev. 2010;110(5):2858–902.

    Article  CAS  Google Scholar 

  2. Antunes P, Ginj M, Zhang H, et al. The renaissance of the Ge/Ga radionuclide generator initiates new developments in Ga radiopharmaceutical chemistry. Curr Top Med Chem. 2010;10(16):1633–68.

    Article  Google Scholar 

  3. Breeman WA, De Jong M, Visser TJ, et al. Optimising conditions for radiolabelling of DOTA-peptides with 90Y, 111In and 177Lu at high specific activities. Eur J Nucl Med Mol Imaging. 2003;30(6):917–20.

    Article  CAS  Google Scholar 

  4. Antunes P, Ginj M, Zhang H, et al. Are radiogallium-labelled DOTA conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging. 2007;34(7):982–93.

    Article  CAS  Google Scholar 

  5. Breeman WA, de Blois E, Sze Chan H, et al. (68)Ga-labeled DOTA-peptides and (68)Ga-labeled radiopharmaceuticals for positron emission tomography: current status of research, clinical applications, and future perspectives. Semin Nucl Med. 2011;41(4):314–21.

    Article  Google Scholar 

  6. Reubi JC, Waser B, Schaer JC, et al. Somatostatin receptor sst1-sst5 expression in normal and neoplastic human tissues using receptor autoradiography with subtype-selective ligands. Eur J Nucl Med. 2001;28(7):836–46.

    Article  CAS  Google Scholar 

  7. Poeppel TD, Binse I, Petersenn S, et al. 68Ga-DOTATOC versus 68Ga-DOTATATE PET/CT in functional imaging of neuroendocrine tumors. J Nucl Med. 2011;52(12):1864–70.

    Article  CAS  Google Scholar 

  8. Hofmann M1, Maecke H, Börner R, et al. Biokinetics and imaging with the somatostatin receptor PET radioligand (68)Ga-DOTATOC: preliminary data. Eur J Nucl Med. 2001;28(12):1751–7.

    Article  CAS  Google Scholar 

  9. Prasad V, Baum RP. Biodistribution of the Ga-68 labeled somatostatin analogue DOTA-NOC in patients with neuroendocrine tumors: characterization of uptake in normal organs and tumor lesions. Q J Nucl Med Mol Imaging. 2010;54(1):61–7.

    CAS  PubMed  Google Scholar 

  10. Reubi JC, Schaer JC, Markwalder R, et al. Distribution of somatostatin receptors in normal and neoplastic human tissues: recent advances and potential relevance. Yale J Biol Med. 1997;70(5–6):471–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Rindi G, Petrone G, Inzani F. The 2010 WHO classification of digestive neuroendocrine neoplasms: a critical appraisal four years after its introduction. Endocr Pathol. 2014;25(2):186–92.

    Article  CAS  Google Scholar 

  12. Sommer WH, Zech CJ, Bamberg F, et al. Fluid-fluid level in hepatic metastases: a characteristic sign of metastases of neuroendocrine origin. Eur J Radiol. 2012;81(9):2127–32.

    Article  Google Scholar 

  13. Sankowski AJ, Ćwikla JB, Nowicki M, et al. The clinical value of MRI using single-shot echoplanar DWI to identify liver involvement in patients with advanced gastroenteropancreatic-neuroendocrine tumors (GEP-NETs), compared to FSE T2 and FFE T1 weighted image after i.v. Gd-EOB-DTPA contrast enhancement. Med Sci Monit. 2012;18(5):MT33–40.

    Article  Google Scholar 

  14. Song YS, Lee WW, Chung JH, et al. Correlation between FDG uptake and glucose transporter type 1 expression in neuroendocrine tumors of the lung. Lung Cancer. 2008;61(1):54–60.

    Article  Google Scholar 

  15. Kowalski J, Henze M, Schuhmacher J, et al. Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol Imaging Biol. 2003;5(1):42–8.

    Article  Google Scholar 

  16. Gabriel M, Decristoforo C, Kendler D, et al. 68Ga-DOTA-Tyr3-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med. 2007;48(4):508–18.

    Article  CAS  Google Scholar 

  17. Putzer D, Gabriel M, Henninger B, et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med. 2009;50(8):1214–21.

    Article  Google Scholar 

  18. Haug AR, Cindea-Drimus R, Auernhammer CJ, et al. The role of 68Ga-DOTATATE PET/CT in suspected neuroendocrine tumors. J Nucl Med. 2012;53(11):1686–92.

    Article  CAS  Google Scholar 

  19. Treglia G, Castaldi P, Rindi G, et al. Diagnostic performance of Gallium-68 somatostatin receptor PET and PET/CT in patients with thoracic and gastroenteropancreatic neuroendocrine tumours: a meta-analysis. Endocrine. 2012;42(1):80–7.

    Article  CAS  Google Scholar 

  20. Kabasakal L, Demirci E, Ocak M, et al. Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2012;39(8):1271–7.

    Article  Google Scholar 

  21. Wild D, Bomanji JB, Benkert P, et al. Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med. 2013;54(3):364–72.

    Article  CAS  Google Scholar 

  22. Boy C, Heusner TA, Poeppel TD, et al. 68Ga-DOTATOC PET/CT and somatostatin receptor (sst1-sst5) expression in normal human tissue: correlation of sst2 mRNA and SUVmax. Eur J Nucl Med Mol Imaging. 2011;38(7):1224–36.

    Article  CAS  Google Scholar 

  23. Campana D, Ambrosini V, Pezzilli R, et al. Standardized uptake values of (68)Ga-DOTANOC PET: a promising prognostic tool in neuroendocrine tumors. J Nucl Med. 2010;51(3):353–9.

    Article  Google Scholar 

  24. Bodei L, Ferone D, Grana CM, et al. Peptide receptor therapies in neuroendocrine tumors. J Endocrinol Invest. 2009;32(4):360–9.. Review

    Article  CAS  Google Scholar 

  25. Bodei L, Pepe G, Paganelli G. Peptide receptor radionuclide therapy (PRRT) of neuroendocrine tumors with somatostatin analogues. Eur Rev Med Pharmacol Sci. 2010;14(4):347–51.. Review

    CAS  PubMed  Google Scholar 

  26. Falletta S, Partelli S, Rubini C, et al. mTOR inhibitors response and mTOR pathway in pancreatic neuroendocrine tumors. Endocr Relat Cancer. 2016. pii: ERC-16-0329

    Google Scholar 

  27. Kratochwil C, Stefanova M, Mavriopoulou E, et al. SUV of [68Ga]DOTATOC-PET/CT predicts response probability of PRRT in neuroendocrine tumors. Mol Imaging Biol. 2015;17(3):313–8.

    Article  CAS  Google Scholar 

  28. Haug AR, Auernhammer CJ, Wängler B, et al. 68Ga-DOTATATE PET/CT for the early prediction of response to somatostatin receptor-mediated radionuclide therapy in patients with well-differentiated neuroendocrine tumors. J Nucl Med. 2010;51(9):1349–56.

    Article  CAS  Google Scholar 

  29. Filippi L, Scopinaro F, Pelle G, et al. Molecular response assessed by (68)Ga-DOTANOC and survival after (90)Y microsphere therapy in patients with liver metastases from neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2016;43(3):432–40.

    Article  CAS  Google Scholar 

  30. Naji M, Zhao C, Welsh SJ, et al. 68Ga-DOTA-TATE PET vs. 123I-MIBG in identifying malignant neural crest tumours. Naji Mol Imaging Biol. 2011;13(4):769–75.

    Article  Google Scholar 

  31. Kroiss A, Shulkin BL, Uprimny C, et al. (68)Ga-DOTATOC PET/CT provides accurate tumour extent in patients with extraadrenal paraganglioma compared to (123)I-MIBG SPECT/CT. Eur J Nucl Med Mol Imaging. 2015;42(1):33–41.

    Article  Google Scholar 

  32. Rinzivillo M, Partelli S, Prosperi D, et al. Clinical usefulness of 18F-fluorodeoxyglucose positron emission tomography in the diagnostic algorithm of advanced Entero-pancreatic neuroendocrine neoplasms. Oncologist. 2018;23(2):186–92.

    Article  CAS  Google Scholar 

  33. Filippi L, Schillaci O, Cianni R, et al. Imaging neuroendocrine hepatic metastases following 90Y-Radioembolization: is it time to implement routine use of PET molecular/metabolic probes? Cardiovasc Intervent Radiol. 2019;42(6):933–4. https://doi.org/10.1007/s00270-019-02186-w.

    Article  PubMed  Google Scholar 

  34. Kayani I, Bomanji JB, Groves A, et al. Functional imaging of neuroendocrine tumors with combined PET/CT using 68Ga-DOTATATE (Dota-DPhe1Tyr-octreotate) and 18F-FDG. Cancer. 2008;112(11):2447–55.

    Article  Google Scholar 

  35. Panagiotidis E, Alshammari A, Michopoulou S, et al. Comparison of the impact of 68Ga-DOTATATE and 18F-FDG PET/CT on clinical management in patients with neuroendocrine tumors. J Nucl Med. 2016. pii: jnumed.116.178095

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Filippi, L., Pizzichini, P., Bagni, O., Scopinaro, F. (2020). Somatostatin Receptor Analogs (68Ga-DOTATOC, 68Ga-DOTANOC, 68Ga-DOTATATE). In: Calabria, F., Schillaci, O. (eds) Radiopharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-27779-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27779-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27778-9

  • Online ISBN: 978-3-030-27779-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics