Skip to main content

18F-NaF

  • Chapter
  • First Online:
Radiopharmaceuticals

Abstract

18F-NaF PET/CT is a well-established and validated imaging tool for imaging skeletal system. The bio-distribution represents blood flow that varies among different bones; due to urinary excretion, bladder and kidneys can be normally visualized. The role of this tracer has been well demonstrated in imaging bone metastases, with sensitivity superior to 18F-FDG PET/CT and other conventional imaging modalities. In particular, 18F-NaF PET/CT can detect bone malignant involvement before lesions can be radiologically documented; however, a lack of specificity should be considered, due to the possibility of uptake in benign diseases as calcium deposits in brain and large arteries, osteoarthritis and post-traumatic lesions. Beyond oncology, this tracer can play a role in forensic use, evaluation of skeletal benign diseases, and atherosclerotic plaque.

18F-NaF uptake is also documented in meningioma, rheumatoid arthritis, amyloidosis, and lymphomas. Globally, nuclear medicine physicians must take into account the possibility of 18F-NaF uptake in all calcifications that can occur in benign or malignant diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

18F-FDG:

18F-fluorodeoxyglucose

99mTc-MDP:

99mTc-methyldiphosfonate

CT:

Computed tomography

EANM:

European Association of Nuclear Medicine and Molecular Imaging

FDA:

Food and Drug Administration

MIP:

Maximum intensity projection

PET/CT:

Positron emission computed tomography/computed tomography

SPECT:

Single photon emission computed tomography/computed tomography

SUV:

Standardized uptake value

References

  1. Blau M, Nagler W, Bender MA. Fluorine-18: a new isotope for bone scanning. J Nucl Med. 1962;3:332–4.

    CAS  PubMed  Google Scholar 

  2. Hockley BG, Scott PJ. An automated method for preparation of [(18)F]sodium fluoride for injection, USP to address the technetium-99m isotope shortage. Appl Radiat Isot. 2010;68:117–9.

    Article  CAS  Google Scholar 

  3. Hawkins RA, Choi Y, Huang SC, et al. Evaluation of the skeletal kinetics of fluorine-18-fluoride ion with PET. J Nucl Med. 1992;33:633–42.

    CAS  PubMed  Google Scholar 

  4. Araz M, Aras G, Küçük ÖN. The role of 18F-NaF PET/CT in metastatic bone disease. J Bone Oncol. 2015;16:92–7.

    Article  Google Scholar 

  5. Minamimoto R, Mosci C, Jamali M, et al. Semiquantitative analysis of the biodistribution of the combined 18F-NaF and 18F-FDG administration for PET/CT imaging. J Nucl Med. 2015;56:688–94.

    Article  CAS  Google Scholar 

  6. Morbelli S, Fiz F, Piccardo A, et al. Divergent determinants of 18F-NaF uptake and visible calcium deposition in large arteries: relationship with Framingham risk score. Int J Cardiovasc Imaging. 2014;30:439–47.

    Article  Google Scholar 

  7. Kawaguchi M, Tateishi U, Shizukuishi K, et al. 18F-fluoride uptake in bone metastasis: morphologic and metabolic analysis on integrated PET/CT. Ann Nucl Med. 2010;24:241–7.

    Article  Google Scholar 

  8. Damle NA, Bal C, Bandopadhyaya GP, et al. The role of 18F-fluoride PET-CT in the detection of bone metastases in patients with breast, lung and prostate carcinoma: a comparison with FDG PET/CT and 99mTc-MDP bone scan. Jpn J Radiol. 2013;31:262–9.

    Article  Google Scholar 

  9. Langsteger W, Rezaee A, Pirich C, et al. 18F-NaF-PET/CT and 99mTc-MDP bone scintigraphy in the detection of bone metastases in prostate Cancer. Semin Nucl Med. 2016;46:491–501.

    Article  Google Scholar 

  10. Beheshti M, Rezaee A, Geinitz H, et al. Evaluation of prostate cancer bone metastases with 18F-NaF and 18F-fluorocholine PET/CT. J Nucl Med. 2016;57:55S–60S.

    Article  CAS  Google Scholar 

  11. Beheshti M, Vali R, Waldenberger P, et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging. 2008;35:1766–74.

    Article  Google Scholar 

  12. De Giorgi U, Caroli P, Burgio SL, et al. Early outcome prediction on 18F-fluorocholine PET/CT in metastatic castration-resistant prostate cancer patients treated with abiraterone. Oncotarget. 2014;15:12448–58.

    Google Scholar 

  13. Brenner W, Bohuslavizki KH, Eary JF. PET imaging of osteosarcoma. J Nucl Med. 2003;44:930–42.

    PubMed  Google Scholar 

  14. Beheshti M, Mottaghy FM, Payche F, et al. (18)F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging. 2015;42:1767–77.

    Article  CAS  Google Scholar 

  15. Guo HH, Moradi F, Iagaru A. Clinical significance of extraskeletal computed tomography findings on 18F-NaF PET/CT performed for osseous metastatic disease evaluation. Nucl Med Commun. 2016;37:975–82.

    Article  Google Scholar 

  16. Kairemo K, Joensuu T. Radium-223-dichloride in castration resistant metastatic prostate Cancer-preliminary results of the response evaluation using F-18-fluoride PET/CT. Diagnostics (Basel). 2015;13:413–27.

    Article  Google Scholar 

  17. Cook G Jr, Parker C, Chua S, et al. 18F-fluoride PET: changes in uptake as a method to assess response in bone metastases from castrate-resistant prostate cancer patients treated with 223Ra-chloride (Alpharadin). EJNMMI Res. 2011;7:4.

    Article  Google Scholar 

  18. Tan AL, Tanner SF, Waller ML, et al. High-resolution [18F]fluoride positron emission tomography of the distal interphalangeal joint in psoriatic arthritis-a bone-enthesis-nail complex. Rheumatology. 2013;52:898–904.

    Article  Google Scholar 

  19. Strobel K, Fischer DR, Tamborrini G, et al. 18F-fluoride PET/CT for detection of sacroiliitis in ankylosing spondylitis. Eur J Nucl Med Mol Imaging. 2010;37:1760–5.

    Article  Google Scholar 

  20. Aratake M, Yoshifumi T, Takahashi A, et al. Evaluation of lesion in a spontaneous osteonecrosis of the knee using 18F-fluoride positron emission tomography. Knee Surg Sports Traumatol Arthrosc. 2009;17:53–9.

    Article  Google Scholar 

  21. Chakraborty D, Mittal BR, Kamaleshwaran KK, et al. Urinary bladder carcinoma associated with Paget’s disease of skull: imaging findings on Tc99m-MDP bone scintigraphy, F18-fluoride PET/CT and F18-FDG PET/CT. Indian J Nucl Med. 2011;26:42–3.

    PubMed  PubMed Central  Google Scholar 

  22. Ovadia D, Metser U, Lievshitz G, et al. Back pain in adolescents: assessment with integrated 18F-fluoride positron-emission tomography-computed tomography. J Pediatr Orthop. 2007;27:90–3.

    Article  Google Scholar 

  23. Sterner T, Pink R, Freudenberg L, et al. The role of [18F]fluoride positron emission tomography in the early detection of aseptic loosening of total knee arthroplasty. Int J Surg. 2007;5:99–104.

    Article  CAS  Google Scholar 

  24. Drubach LA. Pediatric bone scanning: clinical indication of (18)F NaF PET/CT. PET Clin. 2012;7:293–301.

    Article  Google Scholar 

  25. Drubach LA, Sapp MV, Laffin S, et al. Fluorine-18 NaF PET imaging of child abuse. Pediatr Radiol. 2008;33(7):776–9.

    Article  Google Scholar 

  26. Drubach LA, Johnston PR, Newton AW, et al. Skeletal trauma in child abuse: detection with 18F-NaF PET. Radiology. 2010;255:173–81.

    Article  Google Scholar 

  27. Segall G, Delbeke D, Stabin MG, et al. SNM practice guideline for sodium 18F-fluoride PET/CT bone scans 1.0. J Nucl Med. 2010;51:1813–20.

    Article  Google Scholar 

  28. Idolazzi L, Salgarello M, Gatti D, et al. 18F-fluoride PET/CT for detection of axial involvement in ankylosing spondylitis: correlation with disease activity. Ann Nucl Med. 2016;30:430–4.

    Article  Google Scholar 

  29. Watanabe T, Takase-Minegishi K, Ihata A, et al. (18)F-FDG and (18)F-NaF PET/CT demonstrate coupling of inflammation and accelerated bone turnover in rheumatoid arthritis. Mod Rheumatol. 2016;26:180–7.

    Article  CAS  Google Scholar 

  30. Quirce R, Martínez-Rodríguez I, Banzo I, et al. New insight of functional molecular imaging into the atheroma biology: 18F-NaF and 18F-FDG in symptomatic and asymptomatic carotid plaques after recent CVA. Preliminary results. Clin Physiol Funct Imaging. 2016;36:499–503.

    Article  CAS  Google Scholar 

  31. Dweck MR, Chow MW, Joshi NV, et al. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48.

    Article  CAS  Google Scholar 

  32. Fiz F, Bauckneht M, Piccardo A, et al. Metabolic and densitometric correlation between atherosclerotic plaque and trabecular bone: an 18F-Natrium-fluoride PET/CT study. Am J Nucl Med Mol Imaging. 2018;20:387–96.

    Google Scholar 

  33. Reilly CC, Raynor WY, Hong AL, et al. Diagnosis and monitoring of osteoporosis with 18F-sodium fluoride PET: an unavoidable path for the foreseeable future. Semin Nucl Med. 2018;48:535–40.

    Article  Google Scholar 

  34. Cascini GL, Cuccurullo V, Mansi L. 18FNa-fluoride has a higher extraction with respect to 99mTc-methylene diphosphonate: mismatch in a case of meningioma. Rev Esp Med Nucl Imagen Mol. 2014;33:52–3.

    CAS  PubMed  Google Scholar 

  35. Thenkondar A, Jafari L, Sooriash R, et al. 18F-NaF PET demonstrating unusual focal tracer activity in the brain. Clin Nucl Med. 2017;42:127–8.

    Article  Google Scholar 

  36. Van Der Gucht A, Galat A, Rosso J, et al. [18F]-NaF PET/CT imaging in cardiac amyloidosis. J Nucl Cardiol. 2016;23:846–9.

    Article  Google Scholar 

  37. Zheng W, Chen Y, Huang Z, et al. Burkitt lymphoma presented as acute lower Back pain and revealed by 18F-NaF PET/CT. Clin Nucl Med. 2016;41:e253–4.

    Article  Google Scholar 

  38. Shao F, Wu J, Huang Z, et al. Serendipitous detection of Hodgkin lymphoma by 18F-NaF PET/CT. Clin Nucl Med. 2016;41:815–8.

    Article  Google Scholar 

  39. Asmar A, Simonsen L, Svolgaard B, et al. Unexpected diffuse 18F-NaF uptake in the lung parenchyma in a patient with severe hypercalcemia due to myelomatosis. Clin Nucl Med. 2017;42:68–9.

    Article  Google Scholar 

  40. Seraj SM, Al-Zaghal A, Østergaard B, et al. Identification of heterotopic ossification using 18F-NaF PET/CT. Clin Nucl Med. 2019;44:319–20.

    Article  Google Scholar 

  41. Chou YH, Ko KY, Cheng MF, et al. 18F-NaF PET/CT images of cardiac metastasis from osteosarcoma. Clin Nucl Med. 2016;41:708–9.

    Article  Google Scholar 

  42. Zou Y, Chen Y, Huang Z, et al. Elevated 99mTc-MDP and 18F-NaF uptake in a bladder stone. Clin Nucl Med. 2016;41:732–3.

    Article  Google Scholar 

  43. Calabria F. Fifty shades of meningioma: challenges and perspectives of different PET molecular probes. Clin Transl Imaging. 2017;5:403–405.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdinando Calabria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Calabria, F., Schillaci, O. (2020). 18F-NaF. In: Calabria, F., Schillaci, O. (eds) Radiopharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-27779-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27779-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27778-9

  • Online ISBN: 978-3-030-27779-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics