Skip to main content

11C-Methionine

  • Chapter
  • First Online:
Radiopharmaceuticals

Abstract

Methionine (MET) is an essential α-amino acid which plays a role in several biochemical processes, such as biosynthesis of proteins.

L-Methionine labeled with 11C acts as a positron emission tomography tracer, as it is involved in synthesis of proteins in brain tumors.

Normal brain tissue recognizes only glucose as a metabolic substrate (thus having a very low physiological 11C-methionine uptake), whereas tumoral brain tissues present an increased 11C-methionine uptake. This makes the signal-to-noise ratio quite high, thus helping in reading and interpreting PET scans.

11C-Methionine PET is easy and fast to perform. Usually 370–740 MBq of tracer is injected intravenously and, because of the short half-life of 11C-labeled molecules (20 min), the uptake time ranges from only 10–30 min.

11C-Methionine PET is a useful diagnostic and therapeutic tool in neuro-oncology. It has a high sensitivity in identifying primary brain tumors (histologic grading, define the extent of tumor, identify optimal biopsy sites), metastases, recurrence, plan radiotherapy and response to therapy. Additionally it allows the study of myocardial infarction, hyperparathyroidism, squamous cell head and neck cancer, multiple myeloma, and lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

11C-CH3I:

Methyl iodide

11C-CH3OTf:

11C-Methyl triflate

11C-CO2:

Carbon dioxide

BBB:

Blood brain barrier

BTV:

Biological target volume

CT:

Computed tomography

FCD:

Focal cortical dysplasia

FLAIR:

Fluid-attenuated inversion recovery

GTV:

Gross tumor volume

HI:

Hydriodic acid

HNSCC:

Squamous cell head and neck cancer

HPLC:

High-performance liquid chromatography

L/N:

Lesion-to-normal

LAT:

L-type amino acid transporter

MET:

Methionine

MIBI:

99mTc-methoxy-isobutyl-isonitrile

MM:

Multiple myeloma

MR:

Magnetic resonance

NSCLC:

Non-small cell lung cancer

PA:

Parathyroid adenoma

PH:

Parathyroid hyperplasia

pHPT:

Primary hyperparathyroidism

PTH:

Parathyroid hormone

RANO:

Response assessment in neuro-oncology

SUV:

Standardized uptake value

TLC:

Thin layer chromatography

References

  1. Saha GB. Fundamentals of Nuclear Pharmacy 2014.

    Google Scholar 

  2. Pascali C, Bogni A, Cucchi C, et al. High efficiency preparation of L-[S-methyl-11C]methionine by on-column [11C]methylation on C18 Sep-Pak. J Radioanal Nucl Chem. 1999;288:405–9.

    Google Scholar 

  3. Harris SM, James C, et al. Evaluation of the biodistribution of 11C-methionine in children and young adults. J Nucl Med. 2013;54:1902–8.

    Article  CAS  Google Scholar 

  4. Nakajima R, et al. Optimization of scan ignition timing after 11C methionine administration for the diagnosis of suspected recurrent brain tumors. Ann Nucl Med. 2017;31(2):190–7.

    Article  CAS  Google Scholar 

  5. Calabria F., Schillaci O. Radiopharmaceuticals Metabolic pathways for PET/CT and PET/ME Moleculr Imaging - Chapter 11: 11C-methionine. 2018.

    Google Scholar 

  6. Hoffman RM. L-[Methyl-11C] methionine-positron-emission tomography (MET-PET). Methods Mol Biol. 2019;1866:267–71.

    Article  Google Scholar 

  7. Galldiks N, Langen K-J, Pope WB. From the clinician’s point of view - What is the status quo of positron emission tomography in patients with brain tumors? Neuro-Oncology. 2015;17(11):1434–44.

    Article  CAS  Google Scholar 

  8. Minamimoto R, et al. Differentiation of brain tumor recurrence from post-radiotherapy necrosis with 11C-methionine PET: visual assessment versus quantitative assessment. PLoS One. 2015;10(7):e0132515.

    Article  Google Scholar 

  9. Ceyssens S, Van Laere K, de Groot T, et al. [11C]Methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR. 2006;27(7):1432–7.

    CAS  PubMed  Google Scholar 

  10. Galldiks N, Stoffels G, Ruge MI, et al. Role of O-(2–18Ffluoroethyl)- L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med. 2013;54(12):2046–54.

    Article  CAS  Google Scholar 

  11. Glaudemans AW, Enting RH, Heesters MA, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging. 2013;40(4):615–35.

    Article  CAS  Google Scholar 

  12. Grosu AL, Astner ST, Riedel E, et al. An interindividual comparison of O-(2-[11F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases. Int J Radiat Oncol Biol Phys. 2011;81:1049–58.

    Google Scholar 

  13. Grègoire V, Haustermans K, Geets X, et al. PET-based treatment planning in Ra-diotherapy: a new standard? J Nucl Med. 2007;48:68S–76S.

    PubMed  Google Scholar 

  14. Lohmann P, Werner J-M, Jon Shah N, Langen GRFK-J, Galldiks N. Combined amino acid positron emission tomography and advanced magnetic resonance imaging in glioma patients. Cancer. 2019;11:153.

    Article  Google Scholar 

  15. Kawasaki T, Miwa K, Shinoda J, Asano Y, Takei H, Ikegame Y, Yokoyama K, Yano H, Iwama T. Dissociation between 11C-methionine-PET and Gd-MRI in the longitudinal features of Glioblastoma after postoperative radiotherapy. World Neurosurg. 2019. pii: S1878-8750(19)30229-3

    Google Scholar 

  16. Qiao Z, Zhao X, Wang K, Zhang Y, Fan D, Yu T, Shen H, Chen Q, Ai L. Utility of dynamic susceptibility contrast perfusion-weighted MR imaging and 11C-methionine PET/CT for differentiation of tumor recurrence from radiation injury in patients with high-grade gliomas. AJNR Am J Neuroradiol. 2019;40(2):253–9.

    Article  CAS  Google Scholar 

  17. Ito K, Matsuda H, Kubota K. Imaging spectrum and pitfalls of 11C-methionine positron emission tomography in a series of patients with intracranial lesions. Korean J Radiol. 2016;17(3):424–34.

    Article  Google Scholar 

  18. Thackeray JT, Bankstahl JP, Wang Y, et al. Targeting amino acid metabolism for molecular imaging of inflammation early after myocardial infarction. Theranostics. 2016;6(11):1768–79.

    Article  CAS  Google Scholar 

  19. Phitayakorn R, McHenry CR. Incidence and location of ectopic abnormal parathyroid glands. Am J Surg. 2006;191:418–23.

    Article  Google Scholar 

  20. Wei WJ, Shen CT, Song HJ, et al. Comparison of SPET/CT, SPET and planar imaging using 11mTc-MIBI as independenttechniques to support minimally invasive parathyroidectomy in primary hyperparathyroidism: a meta-analysis. Hell J Nucl Med. 2015;18:127–35.

    Google Scholar 

  21. In KC, Gi JC, et al. Detection and characterization of parathyroid adenoma/hyperplasia for preoperative localization: comparison between 11C-methionine PET/CT and 99mTc-sestamibi scintigraphy. Nucl Med Mol Imaging. 2013;47(3):166–72.

    Article  Google Scholar 

  22. Leskinen-Kallio S, Lindholm P, Lapela M, et al. Imaging of head and neck tumors with positron emission tomography and 11C-methionine. Int J Radiat Oncol Biol Phys. 1994;30(5):1195–9.

    Article  CAS  Google Scholar 

  23. Chesnay E, Babin E, Constans JM, et al. Early response to chemotherapy in hypopharyngeal cancer: assessment with 11C-methionine PET, correlation with morphologic response, and clinical outcome. J Nucl Med. 2003;44(4):526–32.

    CAS  PubMed  Google Scholar 

  24. Lapa C, Knop S, Schreder M, et al. 11C-methionine-PET in multiple myeloma: correlation with clinical parameters and bone marrow involvement. Theranostics. 2016;6(2):254–61.

    Article  CAS  Google Scholar 

  25. Kaste SC, Snyder SE, Metzger ML, et al. Comparison of 11C-methionine and 18F-FDG PET-CT for staging and follow-up of pediatric lymphoma. J Nucl Med. 2017;58(3):419–24.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cosentino, S., Scopelliti, F., Murè, G., Baldari, S., Ippolito, M. (2020). 11C-Methionine. In: Calabria, F., Schillaci, O. (eds) Radiopharmaceuticals. Springer, Cham. https://doi.org/10.1007/978-3-030-27779-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27779-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27778-9

  • Online ISBN: 978-3-030-27779-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics