Fruit Ripening

  • Anthony Keith Thompson
  • Suriyan Supapvanich
  • Jiraporn Sirison
Part of the SpringerBriefs in Food, Health, and Nutrition book series (BRIEFSFOOD)


Bananas are climacteric fruit and are harvested at the pre-climacteric phase and ripened postharvest. Ripening begins when the endogenous concentration of ethylene reaches a critical level. There are many changes that occur to the fruit during the ripening process including colour, texture, aroma and taste. These physical and chemical changes and the way in which fruit are ripened can affect these characteristics which in turn can affect their quality, acceptability and nutritional status.


  1. Adams, D. O., & Yang, S. F. (1979). Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceeding of the National Academy of Sciences of the United States of America, 76, 170–174.CrossRefGoogle Scholar
  2. Adão, R. C., & Glória, M. B. A. (2005). Bioactive amines and carbohydrate changes during ripening of ‘Prata’ banana (Musa acuminata × M. balbisiana). Food Chemistry, 90, 705–711.CrossRefGoogle Scholar
  3. Adeyemi, O. S., & Oladiji, A. T. (2009). Compositional changes in banana (Musa spp.) fruits during ripening. African Journal of Biotechnology, 8, 858–859.Google Scholar
  4. Ahmad, S., & Thompson, A. K. (2006). Effect of controlled atmosphere storage on ripening and quality of banana fruit. Journal of Horticultural Science & Biotechnology, 81, 1021–1024.CrossRefGoogle Scholar
  5. Ahmad, S., Thompson, A. K., & Perviez, M. A. (2007). Effect of harvest maturity stage and hand positions on the ripening behaviour and quality of banana fruit. Acta Horticulturae, 741.Google Scholar
  6. Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., & Ecker, J. R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284, 2148–2152.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Anhwange, B., Ugye, J. T., & Nyiatagher, T. D. (2009). Chemical composition of Musa sepientum (banana) peels. Electronic Journal of Environmental, Agricultural and Food Chemistry, 8, 437–442.Google Scholar
  8. Anonymous. (2019). Ripelock. Accessed 7 April 2019.
  9. Arora, A., Choudhary, D., Agarwal, G., & Singh, V. P. (2008). Compositional variation in β-carotene content, carbohydrate and antioxidant enzymes in selected banana cultivars. Institute of Food Science and Technology, 43, 1913–1921.Google Scholar
  10. Ball, K. L., Green, J. H., & Ap Rees, T. (1991). Glycolysis at the climacteric bananas. European Journal of Biochemistry, 197, 265–269.PubMedCrossRefGoogle Scholar
  11. Barnell, H. R. (1943). Studies in tropical fruits. Carbohydrate metabolism of the banana fruit during storage at 53 °F. Annals of Botany New Series, 9, 1–22.Google Scholar
  12. Barry, C. S., & Giovannoni, J. J. (2007). Ethylene and fruit ripening. Journal of Plant Growth Regulation, 26, 143–159.CrossRefGoogle Scholar
  13. Baskar, R., Shrisakthi, S., Sathyapriya, B., Shyampriya, R., Nithya, R., & Poongodi, P. (2011). Antioxidant potential of peel extracts of banana varieties (Musa sapientum). Food and Nutrition Sciences, 2, 1128–1133.CrossRefGoogle Scholar
  14. Beatrice, E., Deborah, N., & Guy, B. (2015). Provitamin A carotenoid content of unripe and ripe banana cultivars for potential adoption in eastern. African Journal of Food Composition and Analysis, 43, 1–6.CrossRefGoogle Scholar
  15. Belitz, H. D., Grosch, W., & Schierberle, P. (2009). Food chemistry (4th ed.). Springer Publications.Google Scholar
  16. Bennett, R. N., Shiga, T. M., Hassimotto, N. M., Rosa, E. A., Lajolo, F. M., & Cordenunsi, B. R. (2010). Phenolics and antioxidant properties of fruit pulp and cell wall fractions of postharvest banana (Musa acuminata Juss.) cultivars. Journal of Agricultural and Food Chemistry, 58, 7991–8003.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Bhova, H. P., Patel, J. C., & Amin, H. D. (1978). Effect of Ethrel on ripening of some varieties of mango (Mangifera indica L.) fruits. Indian Journal of Agricultural Research, 12, 263–265.Google Scholar
  18. Biale, J. B. (1964). Growth, maturation and senescence in fruits. Science, 146, 880–888.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Blackbourn, H. D., Jeger, M. J., John, P., & Thompson, A. K. (1990). Inhibition of degreening in the peel of bananas ripened at tropical temperatures, III changes in plastid ultrastructure and chlorophyll-protein complexes accompanying ripening in bananas and plantains. Annals of Applied Biology, 117, 147–161.Google Scholar
  20. Blackbourn, H. D., Jeger, M. J., John, P., Telfer, A., & Barber, J. (1990a). Inhibition of degreening in the peel of bananas ripened at tropical temperatures. IV. Phytosynthetic capacity of ripening bananas and plantains in relation to changes in the lipid composition of ripening banana peel. Annals of Applied Biology, 117, 163–174.CrossRefGoogle Scholar
  21. Bouzayen, M., Latché, A., Nath, P., & Pech, J. C. (2010). Mechanism of fruit ripening. Chapter 16. In Plant developmental biology – biotechnological perspectives (Vol. 1). Springer.Google Scholar
  22. Bowden, A. P., Khanbari, O., Wei, Y., & Thompson, A. K. (1994). Implications of genetic variation on the marketing of fruit and vegetables. Aspects of Applied Biology, 39, 103–110.Google Scholar
  23. Brady, C. J. (1987). Fruit ripening. Annual Review of Plant Physiology, 38, 155–178.CrossRefGoogle Scholar
  24. Brat, P., Yahia, A., Chillet, M., Bugaud, C., Bakry, F., Reynes, M., & Brillouet, J. M. (2004). Influence of cultivar, growth altitude and maturity stage on banana volatile compound composition. Fruits, 59, 75–82.CrossRefGoogle Scholar
  25. Bugaud, C., Alter, P., Daribo, M. O., & Brillouet, J. M. (2009). Comparison of the physico-chemical characteristics of a new triploid banana hybrid, FLHORBAN920, and the Cavendish variety. Journal of the Science of Food and Agriculture, 89, 407–413.CrossRefGoogle Scholar
  26. Burg, S. P., & Burg, E. A. (1967). Molecular requirements for the biological activity of ethylene. Plant Physiology, 42, 144–152.PubMedPubMedCentralGoogle Scholar
  27. Campbell, C. W., & Malo, S. E. (1969). The effect of 2-chloroethyl phosphonic acid on ripening of mango fruits. Proceedings of the American Society for Horticultural Science, 13, 221–226.Google Scholar
  28. Cano, M. P., de Ancos, B., Matallana, M. C., Cámara, M., Reglero, G., & Tabera, J. (1997). Differences among Spanish and Latin-American banana cultivars: Morphological, chemical and sensory characteristics. Food Chemistry, 59, 411–419.CrossRefGoogle Scholar
  29. Chillet, M., de Lapeyre de Bellaire, L., Huber, B., & Mbéguié-A- Mbéguié, D. (2008). Measurement of banana green life. Fruits, 63, 125–127.CrossRefGoogle Scholar
  30. Collin, M. N. (1989). Conservation de bananes plantains sous film plastique et polyolefines. IRFA Reunion Annuelle, 37, 7.Google Scholar
  31. Collin, M. N., & Dalnic, R. (1991). Evolution de quelques criteres physico-chimiques de la banane plantain (cultivar Orishele) au cours de la maturation. Fruits, 46, 13–17.Google Scholar
  32. Collin, M. N., & Folliot, M. (1990). Caracteristiques anatomiques de I’epiderme de la banane plantain en relation avec les techniques de conservation. Fruits, 45, 9–16.Google Scholar
  33. Cordenunsi, B. R., & Lajolo, F. M. (1995). Starch breakdown during banana ripening: Sucrose synthase and sucrose phosphate synthase. Journal of Agricultural and Food Chemistry, 43, 347–351.CrossRefGoogle Scholar
  34. Davey, M. W., Van den Bergh, I., Markham, R., Swennen, R., & Keulemans, J. (2009). Genetic variability in Musa fruit provitamin A carotenoids, lutein and mineral micronutrient contents. Food Chemistry, 115, 806–813.CrossRefGoogle Scholar
  35. Davies, K., Hobson, G. E., & Grierson, D. (2006). Silver ions inhibit the ethylene-stimulated production of ripening-related mRNAs in tomato. Plant Cell and Environment, 11, 729–738.Google Scholar
  36. Deekshika, B., Praveena Lakshmi, B., Singuluri, H., & Sukumaran, M. K. (2015). Estimation of ascorbic acid content in fruits & vegetables from Hyderabad, India – A theoretical assessment of Vitamin C activity. International Journal of Current Microbiology and Applied Sciences, 4, 96–99.Google Scholar
  37. Desai, B. B., & Deshpande, P. B. (1975). Chemical transformations in three varieties of banana Musa paradisica Linn fruits stored at 20 °C. Mysore Journal of Agricultural Science, 9, 634–643.Google Scholar
  38. Dominguez-Puigjaner, E., Vendrell, M., & Dolors Ludevid, M. (1992). Differential protein accumulation in banana fruit during ripening. Plant Physiology, 98, 157–162.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Duan, X., Joyce, D. C., & Jiang, Y. (2007). Postharvest biology and handling of banana fruit. Fresh Produce, 1, 140–152.Google Scholar
  40. Elitzur, T., Vrebalov, J., Giovannoni, J. J., Goldschmidt, E. E., & Friedman, H. (2010). The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene. Journal of Experimental Botany, 61, 1523–1535.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Elitzur, T., Yakir, E., Quansah, L., Zhangjun, F., Vrebalov, J., Khayat, E., Giovannoni, J. J., & Friedman, H. (2016). Banana MaMADS transcription factors are necessary for 14 fruit ripening and molecular tools to promote shelf-life and food security. Plant Physiology, 171, 380–391.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Englberger, L., Wills, R. B., Blades, B., Dufficy, L., Daniells, J. W., & Coyne, T. (2006). Carotenoid content and flesh color of selected banana cultivars growing in Australia. Food and Nutrition Bulletin, 27, 281–291.PubMedCrossRefGoogle Scholar
  43. Esguerra, E. B., Hilario, D. C. R., & Absulio, W. L. (2009). Control of finger drop in ‘Latundan’ banana (Musa acuminata AA group) with preharvest calcium spray. Acta Horticulturae, 837, 167–170.CrossRefGoogle Scholar
  44. Fatemeh, S. R., Saifullah, R., Abbas, F. M. A., & Azhar, M. E. (2012). Total phenolics, flavonoids and antioxidant activity of banana pulp and peel flours: Influence of variety and stage of ripeness. International Food Research Journal, 19, 1041–1046.Google Scholar
  45. Ferris, R. S. B., Wainwright, H., & Thompson, A. K. (1995). The effects of morphology, maturity and genotype on the ripening and susceptibility of plantains (AAB) to mechanical damage. Fruits, 50, 45–50.Google Scholar
  46. Finger, F. L., Puschmann, R., & Santos Barros, R. (1995). Effects of water loss on respiration, ethylene production and ripening of banana fruit. Revista Brasileira de Fisiologia Vegetal, 7, 115–118.Google Scholar
  47. Forster, M., Rodríguez-Rodríguez, E. M., Darias-Martín, J., & Díaz, C. (2003). Distribution of nutrients in edible banana pulp. Food Technology and Biotechnology, 41, 167–171.Google Scholar
  48. Fuchs, Y., Zauberman, G., Yanko, U., & Homsky, S. (1975). Ripening of mango fruits with ethylene. Tropical Science, 17, 211–216.Google Scholar
  49. García-Salinas, C., Ramos-Parra, P. A., & Díaz de la Garza, R. I. (2016). Ethylene treatment induces changes in folate profiles in climacteric fruit during postharvest ripening. Postharvest Biology and Technology, 118, 43–50.CrossRefGoogle Scholar
  50. George, J. B. (1981). Storage and ripening of plantains. University of London UK, PhD thesis.Google Scholar
  51. Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 725–749.PubMedCrossRefGoogle Scholar
  52. Golding, J. B., Shearer, D., Wyllie, S. G., & McGlasson, W. B. (1998). Application of 1-MCP and propylene to identify ethylene-dependent ripening processes in mature banana fruit. Postharvest Biology and Technology, 14, 87–98.CrossRefGoogle Scholar
  53. Golding, J. B., Shearer, D., McGlasson, W. B., & Wyllie, S. G. (1999). Relationships between respiration, ethylene, and aroma production in ripening banana. Journal of Agriculture and Food Chemistry, 47, 1646–1651.CrossRefGoogle Scholar
  54. Gross, J., & Flugel, M. (1982). Pigment changes in peel of the ripening banana (Musa cavendish). Gartenbauwissenschaft, 47, 62–64.Google Scholar
  55. Hamilton, A. J., Lycett, G. W., & Grierson, D. (1990). Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature, 346, 284–287.CrossRefGoogle Scholar
  56. Han, Y.-c., Chang-chun, F., Kuang, J.-f., Chen, J.-y., & Lu, W.-j. (2016). Two banana fruit ripening-related C2H2 zinc finger proteins are transcriptional repressors of ethylene biosynthetic genes. Postharvest Biology and Technology, 116, 8–15.CrossRefGoogle Scholar
  57. Hardisson, A., Rubio, C., Baez, A., Martin, M., Alvarez, R., & Diaz, E. (2001). Mineral composition of the banana (Musa acuminata) from the island of Tenerife. Food Chemistry, 73, 153–161.CrossRefGoogle Scholar
  58. Hubbard, N. L., Pharr, D. M., & Huber, S. C. (1990). Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric. Plant Physiology, 94, 201–208.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Huber, D. J. (1983). Polyuronide degredation and hermicellulose modifications in ripening tomato fruits. Journal of the American Society for Horticultural Science, 108, 405–409.Google Scholar
  60. Huber, O., & Mbéguié-A-Mbéguié, D. (2012). Expression patterns of ethylene biosynthesis genes from bananas during fruit ripening and in relationship with finger drop. AOB Plants. Scholar
  61. Imahori, Y., Yamamoto, K., Tanaka, H., & Bai, J. (2013). Residual effects of low oxygen storage of mature green fruit on ripening processes and ester biosynthesis during ripening in bananas. Postharvest Biology and Technology, 77, 19–27.Google Scholar
  62. Imam, M. Z., & Akter, S. (2011). Musa paradisiaca L. and Musa sapientum L.: A phytochemical and pharmacological review. Journal of Applied Pharmaceutical Science, 1, 14–20.Google Scholar
  63. Inaba, A., & Nakamura, R. (1986). Effect of exogenous ethylene concentration and fruit temperature on the minimum treatment time necessary to induce ripening in banana fruit. Journal of the Japanese Society for Horticultural Science, 55, 348–354.CrossRefGoogle Scholar
  64. Inaba, A., & Nakamura, R. (1988). Numerical expression for estimating the minimum ethylene exposure time necessary to induce ripening in banana fruit. Journal of the American Society for Horticultural Science, 561–564.Google Scholar
  65. Iqbal, N., Khan, N., Ferrante, A., Trivellini, A., Francini, A., & Khan, M. I. (2017). Ethylene role in plant growth, development and senescence: Interaction with other phytohormone. Frontiers in Plant Science, 8, 475. Scholar
  66. Izonfuo, W. A. L., & Omuaru, V. O. T. (1988). Effect of ripening on the chemical composition of plantain peels and pulps (Musa paradisiaca). Journal of the Science of Food and Agriculture, 45, 333–336.CrossRefGoogle Scholar
  67. Jayanty, S., Song, J., Rubinstein, N. M., Chong, A., & Beaudry, R. M. (2002). Temporal relationship between ester biosynthesis and ripening events in bananas. Journal of the American Society for Horticultural Science, 127, 998–1005.CrossRefGoogle Scholar
  68. Jedermann, R., Praeger, U., Geyer, M., Moehrke, A., & Lang, W. (2015). The intelligent container for banana transport supervision and ripening. Acta Horticulturae, 1091, 213–220.CrossRefGoogle Scholar
  69. Jiang, Y., Joyce, D. C., & Macnish, A. J. (2000). Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. Journal of Plant Growth Regulation, 19, 106–111.PubMedGoogle Scholar
  70. Johnson, P., & Ecker, J. R. (1998). The ethylene gas signaling pathway in plants: A molecular perspective. Annual Review of Genetics, 32, 227–254.PubMedCrossRefGoogle Scholar
  71. Jordan, R., Seelye, R., & McGlone, A. (2001). A sensory-based alternative to brix/acid ratio. Food Technology, 55, 36–44.Google Scholar
  72. Junior, A. V., Nascimento, J. R. O. D., & Lajolo, F. M. (2006). Molecular cloning and characterization of an α-amylase occurring in the pulp of ripening bananas and its expression in Pichia pastoris. Journal of Agricultural and Food Chemistry, 54, 8222–8228.PubMedCrossRefPubMedCentralGoogle Scholar
  73. Kamdee, C., Ketsa, S., & van Doorn, W. G. (2018). Effect of heat treatment on ripening and early peel spotting in Sucrier banana. Postharvest Biology and Technology, 52, 288–293.CrossRefGoogle Scholar
  74. Kanazawa, K., & Sakakibara, H. (2000). High content of dopamine, a strong antioxidant, in Cavendish banana. Journal of Agricultural and Food Chemistry, 48, 844–848.PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kanellis, A. K., Solomos, T., & Mattoo, A. K. (1989a). Hydrolytic enzyme activities and protein pattern of avocado fruit ripened in air and in low oxygen, with and without ethylene. Plant Physiology, 90, 259–266.PubMedPubMedCentralCrossRefGoogle Scholar
  76. Kanellis, A. K., Loulakakis, K. A., Hassan, M., & Roubelakis-Angelakis, K. A. (1993). Biochemical and molecular aspects of low oxygen action on fruit ripening. In C. J. Pech, A. Latche, & C. Balague (Eds.), Cellular and molecular aspects of the plant hormone ethylene (pp. 117–122). Dordrecht: Kluwer Academic Publishers.Google Scholar
  77. Karikari, S. K., Marriot, J., & Hutchins, P. (1979). Changes during the respiratory climacteric in ripening plantain fruits. Scientia Horticulturae, 10, 369–376.CrossRefGoogle Scholar
  78. Karmawan, L. U., Suhandono, S., & Dwivany, F. M. (2009). Isolation of MA-ACS gene family and expression study of MA-ACS1 gene in Musa acuminata cultivar Pisang Ambon Lumut. HAYATI Journal of Biosciences, 16, 35–39.CrossRefGoogle Scholar
  79. Kays, S. J., & Paull, R. E. (2004). Metabolic processes in harvested products. In Postharvest biology (pp. 79–136). Athens: Exon Press.Google Scholar
  80. Ke, L. S., & Tsai, P. L. (1988). Changes in the ACC content and EFE activity in the peel and pulp of banana fruits during ripening in relation to ethylene production. Journal of the Agricultural Association of China, 143, 48–60.Google Scholar
  81. Kendrick, M. D., & Chang, C. (2008). Ethylene signaling: New levels of complexity and regulation. Current Opinion in Plant Biology, 11, 479–485.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Klieber, A., Bagnato, N., Barrett, R., & Sedgley, M. (2002). Effect of post-ripening nitrogen atmosphere storage on banana shelf-life, visual appearance and aroma. Postharvest Biology and Technology, 25, 15–24.Google Scholar
  83. Kuang, J.-F., Chen, L., Shan, W., Yang, S., Lu, W.-j., & Chen, J.-y. (2013). Molecular characterization of two banana ethylene signaling component MaEBFs during fruit ripening. Postharvest Biology and Technology, 85, 94–101.CrossRefGoogle Scholar
  84. Larotonda, F. D. S., Genena, A. K., Dantela, D., Soares, H. M., Laurindo, J. B., Moreira, R. F. P. M., & Ferreira, S. R. S. (2008). Study of banana (Musa aaa Cavendish cv Nancia) trigger ripening for small scale process. Brazilian Archives of Biology and Technology, 51, 1033–1047.CrossRefGoogle Scholar
  85. Lee, P. J. (2008). Facts about banana potassium. http://ezinearticlescom/?Facts-About-Banana-Potassium&id=1762995 Accessed Oct 2009.
  86. Leong, L. P., & Shui, G. (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry, 76, 69–75.CrossRefGoogle Scholar
  87. Liu, F. W. (1976a). Correlation between banana storage life and minimum treatment time required for ethylene response. Journal of the American Society for Horticultural Science, 101, 63–65.Google Scholar
  88. Liu, F. W. (1976b). Banana response to low concentration of ethylene. Journal of the American Society for Horticultural Science, 101, 222–225.Google Scholar
  89. Liu, F. W. (1976c). Storing ethylene pretreated bananas in controlled atmosphere and hypobared air. Journal of the American Society for Horticultural Science, 101, 198–201.Google Scholar
  90. Liu, X., Shiomi, S., Nakatsuka, A., Kubo, Y., Nakamura, R., & Inaba, A. (1999). Characterization of ethylene biosynthesis associated with ripening in banana fruit. Plant Physiology, 121, 1257–1265.PubMedPubMedCentralCrossRefGoogle Scholar
  91. Liu, R., Wang, Y., Qin, G., & Tian, S. (2016). Molecular basis of 1-methylcyclopropene regulating organic acid metabolism in apple fruit during storage. Postharvest Biology and Technology, 117, 57–63.Google Scholar
  92. Lizada, M. C. C., Pantastico, E. B., Abdullah Shukor, A. R., & Sabari, S. D. (1990). Ripening of banana. In H. Abdulla & E. B. Pantastico (Eds.), Banana (pp. 65–84). Association of Southeast Asian Nations Food Handling Bureau.Google Scholar
  93. Lohani, S., Trivedi, P. K., & Nath, P. (2004). Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: Effect of 1-MCP, ABA and IAA. Postharvest Biology and Technology, 31(2), 119–126.Google Scholar
  94. Lòpez-Gòmez, R., Campbell, A., Dong, J. G., Yang, S. F., & Gòmez-Lim, M. A. (1997). Ethylene biosynthesis in banana fruit: Isolation of a genomic clone to ACC oxidase and expression studies. Plant Science, 123, 123–131.CrossRefGoogle Scholar
  95. Loulakakis, C. A., Hassan, M., Gerasopoulos, D., & Kanellis, A. K. (2006). Effects of low oxygen on in vitro translation products of poly(A) + RNA, cellulase and alcohol dehydrogenase expression in preclimacteric and ripening-initiated avocado fruit. Postharvest Biology and Technology, 39, 29–37.CrossRefGoogle Scholar
  96. Madamba, S. P., Baes, A. U., & Mendoza, D. B., Jr. (1977). Effect of maturity on some biochemical changes during ripening of banana Musa sepientum cv. Lakatan. Food Chemistry, 2, 177–183.CrossRefGoogle Scholar
  97. Maneenuam, T., Ketsa, S., & Van Doorn, W. G. (2007). High oxygen levels promote peel spotting in banana fruit. Postharvest Biology and Technology, 43, 128–132.CrossRefGoogle Scholar
  98. Manrique-Trujillo, S. M., Ramírez-Lόpez, A. C., Ibarra-Laclette, E., & GόmezLim, M. A. (2007). Identification of genes differentially expressed during ripening of banana. Journal of Plant Physiology, 164, 1037–1050.PubMedCrossRefPubMedCentralGoogle Scholar
  99. Marchal, J., & Mallessard, R. (1979). Comparison des immobilisations minerales de quatre cultivars de bananiers a fruits pour cuisson et de deux ‘Cavendish’. Fruits, 34, 373–392.Google Scholar
  100. Marchal, J., Nolin, J., & Letorey, J. (1988). Influence sur la maturation de I’enrobage de bananes avec du Semperfresh. Fruits, 43, 447–453.Google Scholar
  101. Marriott, J., & New, S. (1975). Storage physiology of bananas from new tetrapolid clones. Tropical Science, 17, 155–163.Google Scholar
  102. Marriott, J., New, S., Dixon, E. A., & Martin, K. J. (1979). Factors affecting the preclimacteric period of banana fruit bunches. Annals of Applied Biology, 93, 91–100.CrossRefGoogle Scholar
  103. McCarthy, A. L., Palmer, J. K., Shaw, C. P., & Anderson, E. E. (1963). Correlation of gas chromatographic data with flavour profiles of fresh banana fruit. Journal of Food Science, 28, 379–384.CrossRefGoogle Scholar
  104. McMurchie, E. J., McGlasson, W. B., & Eaks, I. L. (1972). Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature, 237, 235–236.PubMedCrossRefPubMedCentralGoogle Scholar
  105. Medlicott, A. P., Sigrist, J. M. M., Reynolds, S. B., & Thompson, A. K. (1987). Effects of ethylene and acetylene on mango fruit ripening. Annals of Applied Biology, 111, 439–444.CrossRefGoogle Scholar
  106. Medlicott, A. P., Semple, A. J., Thompson, A. J., Blackbourne, H. R., & Thompson, A. K. (1992). Measurement of colour changes in ripening bananas and mangoes by instrumental, chemical and visual assessments. Tropical Agriculture, 69, 161–166.Google Scholar
  107. Minas, I. S., Font, I., Forcada, C., Dangl, G. S., Gradziel, T. M., Dandekar, A. M., & Crisosto, C. H. (2015). Discovery of non-climacteric and suppressed climacteric bud sport mutations originating from a climacteric Japanese plum cultivar (Prunus salicina Lindl.) Frontiers of Plant Science 6, 316 Accessed 4 May 2019.
  108. Montenegro, E. H. (1988). Postharvest behaviour of banana harvested at different stages of maturity. BS student project, University of the Phillipines, Los Baños, Laguna.Google Scholar
  109. Mura, K., & Tanimura, W. (2003). Changes in polyphenol compounds in banana pulp during ripening. Food Preservation Science, 29, 347–351.CrossRefGoogle Scholar
  110. Mustaffa, R., Osman, A., Yusof, S., & Mohamed, S. (1998). Physico-chemical changes in Cavendish banana (Musa cavendishii L var. Montel) at different positions within a bunch during development and maturation. Journal of the Science of Food and Agriculture, 78, 201–207.CrossRefGoogle Scholar
  111. New, S., & Marriott, J. (1974). Post-harvest physiology of tetraploid banana fruit: Response to storage and ripening. Annals of Applied Biology, 78, 193–204.CrossRefGoogle Scholar
  112. New, S., & Marriott, J. (1983). Factors affecting the development of finger drop in bananas after ripening. Journal of Food Technology, 18, 241–250.CrossRefGoogle Scholar
  113. Nogueira, J. M., Fernandes, P. J., & Nascimento, A. M. (2003). Composition of volatiles of banana cultivars from Madeira Island. Phytochemical Analysis, 14, 87–90.PubMedCrossRefGoogle Scholar
  114. Nolin, J. (1985). Etat de maturite des bananes (Giant Cavendish) a la recolte, une nouvelle methode de mesure. Fruits, 40, 623–631.Google Scholar
  115. Noysang, C., Buranasukhon, W., & Khuanekkaphan, M. (2019). Phytochemicals and pharmacological activities from banana fruits of several Musa species for using as cosmetic raw materials. Applied Mechanics and Materials, 891, 30–40.CrossRefGoogle Scholar
  116. Palmer, J. K. (1971). The banana. In A. C. Hulme (Ed.), The biochemistry of fruits and their products (Vol. 2). Academic: London.Google Scholar
  117. Pathak, N., Asif, M. H., Dhawan, P., Srivastava, M. K., & Nath, P. (2003). Expression and activities of ethylene biosynthesis enzymes during ripening in banana fruit and effect of 1-MCP treatment. Plant Growth Regulation, 40, 11–19.Google Scholar
  118. Paul, V., Pandey, R., & Srivastava, G. C. (2012). The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene-An overview. Journal of Food Science and Technology, 49, 1–21.PubMedCrossRefGoogle Scholar
  119. Paull, R. E. (1996). Ethylene, storage and ripening temperatures affect Dwarf Brazilian banana finger drop. Postharvest Biology and Technology, 8, 65–74.CrossRefGoogle Scholar
  120. Pereira, L. C., Ngoh Newilah, G. B., Davey, M. W., & Van den Bergh, I. (2011). Validation of rapid (colour-based) prescreening techniques for analysis of fruit provitamin A contents in banana (Musa spp.). Acta Horticulturae, 897, 161–168.CrossRefGoogle Scholar
  121. Peroni-Okita, F. H. G., Cardoso, M. B., Agopian, R. G. D., Louro, R. P., Nascimento, J. R. O., & Purgatto, E. (2013). The cold storage of green bananas affects the starch degradation during ripening at higher temperature. Carbohydrate Polymers, 96, 137–147.PubMedCrossRefPubMedCentralGoogle Scholar
  122. Pontes, M., Pereira, J., & Câmara, J. S. (2012). Dynamic headspace solid-phase microextraction combined with one-dimensional gas chromatography–mass spectrometry as a powerful tool to differentiate banana cultivars based on their volatile metabolite profile. Food Chemistry, 134, 2509–2520.PubMedCrossRefPubMedCentralGoogle Scholar
  123. Puraikalan, Y. (2018). Characterization of proximate, phytochemical and antioxidant analysis of banana (Musa sapientum) peels/skins and objective evaluation of ready to eat /cook product made with banana peels. Current Research in Nutrition and Food Science, 6. Scholar
  124. Purgatto, E., Lajolo, F. M., Oliveira do Nascimento, J. R., & Cordenunsi, B. R. (2001). Inhibition of β-amylase activity, starch degradation and sucrose formation by indole-3-acetic acid during banana ripening. Planta, 212, 823–828.PubMedPubMedCentralGoogle Scholar
  125. Romero, I., Sanchez-Ballesta, M. T., Maldonado, R., Escribano, M. I., & Merodio, C. (2008). Anthocyanin, antioxidant activity and stress-induced gene expression in high CO2-treated table grapes stored at low temperature. Journal of Plant Physiology, 165, 522–530.PubMedCrossRefPubMedCentralGoogle Scholar
  126. Romphophak, T., Siriphanich, J., Promdang, S., & Ueda, Y. (2004). Effect of modified atmosphere storage on the shelf life of banana ‘Sucrier’. Journal of Horticultural Science & Biotechnology, 79, 659–663.CrossRefGoogle Scholar
  127. Rothan, C., Duret, S., Chevalier, C., & Raymond, P. (1997). Suppression of ripening associated gene expression in tomato fruit subjected to a high CO2 concentration. Plant Physiology, 114, 255–263.PubMedPubMedCentralCrossRefGoogle Scholar
  128. Salmon, B., Martin, G. J., Remaud, G., & Fourel, F. (1996). Compositional and isotopic studies of fruit flavours. Part I. The banana aroma. Flavour and Fragrance Journal, 11, 353–359.CrossRefGoogle Scholar
  129. Saltveit, M., Bradford, K. J., & Dilley, D. R. (1978). Silver ion inhibits ethylene synthesis and action in ripening fruits. Journal of the American Society for Horticultural Science, 103, 472–475.Google Scholar
  130. Sanaeifar, A., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., Ahmadi, H., & Lozano, J. (2014). Development and application of a new low-cost electronic nose for the ripeness monitoring of banana using computational techniques (PCA, LDA, SIMCA, and SVM). Czech Journal of Food Sciences, 32, 538–548.CrossRefGoogle Scholar
  131. Seenappa, M., Laswai, M., & Fernando, S. P. F. (1986). Availability of L-ascorbic acid in Tanzanian banana. Journal of Food Science and Technology, 23, 293–295.Google Scholar
  132. Semple, A. J., & Thompson, A. K. (1988). Influence of the ripening environment on the development of finger drop in bananas. Journal of the Science of Food Agriculture, 46, 139–146.CrossRefGoogle Scholar
  133. Seymour, G. B. (1986). The effect of gases and temperature on banana ripening. PhD thesis, University of Reading.Google Scholar
  134. Seymour, G. B., Thompson, A. K., & John, P. (1987). Inhibition of degreening in the peel of bananas ripened at tropical temperatures. 1. Effect of high temperature on changes in the pulp and peel during ripening. Annals of Applied Biology, 110, 145–151.Google Scholar
  135. Seymour, G. B., Ryder, C. D., Cevik, V., Hammond, J. P., Popovich, A., King, G. J., Vrebalov, J., Giovannoni, J. J., & Manning, K. (2011). A SEPALLA total acidity gene is involved in the development and ripening of strawberry (Fragaria×ananassa Duch.) fruit, a non-climacteric tissue. Journal of Experimental Botany, 62, 1179–1188.PubMedCrossRefGoogle Scholar
  136. Seymour, G. B., Chapman, N. H., Chew, B. L., & Rose, J. K. C. (2013). Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnology Journal, 11, 269–278.PubMedCrossRefGoogle Scholar
  137. Sheng, K., Zheng, H., Shui, S. S., Yan, L., & Zheng, L. (2018). Comparison of postharvest UV-B and UV-C treatments on table grape: changes in phenolic compounds and their transcription of biosynthetic genes during storage. Postharvest Biology and Technology, 138, 74–81.CrossRefGoogle Scholar
  138. Shiota, H. (1993). New esteric compounds in the volatiles of banana fruit (Musa sapientum L.). Journal of Agricultural and Food Chemistry, 41, 2056–2062.CrossRefGoogle Scholar
  139. Sidhu, S. S., & Zafar, T. A. (2018). Bioactive compounds in banana fruits and their health benefits. Food Quality and Safety, 2, 183–188.CrossRefGoogle Scholar
  140. Slaughter, M. L. D. C., & Thompson, J. F. (1997). Optical chlorophyll sensing system for banana ripening. Postharvest Biology and Technology, 12, 273–283.CrossRefGoogle Scholar
  141. Smith, N. J. S. (1989). Textural and biochemical changes during ripening of bananas. University of Nottingham, PhD thesis.Google Scholar
  142. Smith, N. J. S., & Seymour, G. B. (1990). Cell wall changes in bananas and plantains. Acta Horticulturae, 269, 283–289.CrossRefGoogle Scholar
  143. Solomos, T., & Biale, J. B. (1975). Facteurs et regulation de la maturation des fruits. Colloque Internationaux du Center National de la Recherche Scientifique, 238, 221–228.Google Scholar
  144. Soltani, M., Alimardani, R., & Omid, M. (2011). Evaluating banana ripening status from measuring dielectric properties. Journal of Food Engineering, 105, 625–631.CrossRefGoogle Scholar
  145. Song, M., Tang, L., Zhang, X., Bai, M., Pang, X., & Zhang, Z. (2015). Effects of high CO2 treatment on green-ripening and peel senescence in banana and plantain fruits. Journal of Integrative Agriculture, 14, 875–887.CrossRefGoogle Scholar
  146. Stepanova, A. N., & Alonso, J. M. (2005). Ethylene signalling and response pathway a unique signalling cascade with a multitude of inputs and outputs. Physiologia Plantarum, 123, 195–206.CrossRefGoogle Scholar
  147. Stover, R. H., & Simmonds, N. W. (1987). Bananas (3rd ed.). London: Longmans.Google Scholar
  148. Sultan, S., & Rangaraju, V. (2014). Changes in colour value of banana var. Grand Naine during ripening. Bioscience Trends, 7, 726–728.Google Scholar
  149. Thompson, A. K., & Burden, O. J. (1995). Harvesting and fruit care. In S. Gowen (Ed.), Bananas and plantains (pp. 403–433). London: Chapman and Hall.Google Scholar
  150. Thompson, A. K. (1996). Postharvest technology of fruits and vegetables. London: Blackwell Science.Google Scholar
  151. Thompson, A. K., Been, B. O., & Perkins, C. (1972). Handling, storage and marketing of plantains. Proceedings of the Tropical Region of the American Society of Horticultural Science, 16, 205–212.Google Scholar
  152. Toledo, T. T., Nogueira, S. B., Cordenunsi, B. R., Gozzo, F. C., Pilau, E. J., Lajolo, F. M., & Oliveira do Nascimento, J. R. (2012). Proteomic analysis of banana fruit reveals proteins that are differentially accumulated during ripening. Postharvest Biology and Technology, 62, 51–58.CrossRefGoogle Scholar
  153. Tonutti, P. (2015). The technical evolution of CA storage protocols and the advancements in elucidating the fruit responses to low oxygen stress. Acta Horticulturae, 1079, 53–60.CrossRefGoogle Scholar
  154. Tressl, R., & Jennings, W. G. (1972). Production of volatile compounds in the ripening banana. Journal of Agricultural and Food Chemistry, 20, 189–192.CrossRefGoogle Scholar
  155. Tucker, G. A. (1993). Introduction. In G. Seymour, J. Taylor, & G. A. Tucker (Eds.), Biochemistry of fruit ripening. Cambridge: Cambridge University Press.Google Scholar
  156. USDA. (2012). Nutrient database. Accessed Oct 2012.
  157. Vanderslice, J. T., Higgs, D. J., Hayes, J. M., & Block, G. (1990). Ascorbic acid and dehydroascorbic acid content of foods-as-eaten. Journal of Food Composition and Analysis, 3, 105–118.CrossRefGoogle Scholar
  158. Venkata Subbaiah, K., Jagadeesh, S. L., Thammaiah, N., & Chavan, M. L. (2013). Changes in physico-chemical and sensory characteristics of banana fruit cv. Grand Naine during ripening. Karnataka Journal of Agricultural Sciences, 26, 111–114.Google Scholar
  159. Vermeir, S., Hertog, M. L. A. T. M., Vankerschaver, K., Swennen, R., Nicolai, B. M., & Lammertyn, J. (2009). Instrumental based flavour characterization of banana fruit. LWT – Food Science and Technology, 42, 1647–1653.CrossRefGoogle Scholar
  160. Vilela, C., Santos, S. A., Villaverde, J. J., Oliveira, L., Nunes, A., Cordeiro, N., Freire, C. S., & Silvestre, A. J. (2014). Lipophilic phytochemicals from banana fruits of several Musa species. Food Chemistry, 162, 247–252.PubMedCrossRefPubMedCentralGoogle Scholar
  161. Von Loesecke, H. W. (1949). Bananas. London: Interscience.Google Scholar
  162. Wade, N. L. (1995). Membrane lipid composition and tissue leakage of pre- and early- climacteric banana fruit. Postharvest Biology and Technology, 5, 139–147.CrossRefGoogle Scholar
  163. Wade, N. L., O’Connell, P. B. H., & Brady, C. J. (1972). Content of RNA and protein of the ripening banana. Phytochemistry, 11, 975–979.CrossRefGoogle Scholar
  164. Wall, M. M. (2006). Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. Journal of Food Composition and Analysis, 19, 434–445.CrossRefGoogle Scholar
  165. Wardlaw, C. W. (1961). Banana diseases. London: Longmans.Google Scholar
  166. Wardlaw, C. W., Leonard, E. R., & Barnell, H. R. (1939). Metabolic and storage investigations of the banana. Low Temperature Research Station, Memoir 11. Imperial College of Tropical Agriculture, Low Temperature Research Station.Google Scholar
  167. Wei, Y., & Thompson A. K. (1993). Modified atmosphere packaging of diploid bananas (Musa AA). Post-harvest Treatment of Fruit and Vegetables. COST’94 Workshop, September 14 to 15 1993, Leuven.Google Scholar
  168. Wendakoon, S. K., Ueda, Y., Imahori, Y., & Ishimaru, M. (2006). Effect of short-term anaerobic conditions on the production of volatiles, activity of alcohol acetyltransferase and other quality traits of ripened bananas. Journal of the Science of Food and Agriculture, 86, 1475–1480.CrossRefGoogle Scholar
  169. Wenkam, N. S. (1990). Food of Hawaii and the Pacific basin, fruits and fruit products: Raw, processed, and prepared. Volume 4: Composition. Hawaii Agricultural Experiment Station Research and Extension Series 110.Google Scholar
  170. Wills, R. B. H. (1990). Postharvest technology of banana and papaya in Association of Southeast Asian Nations: An overview. Association of Southeast Asian Nations Food Journal, 5, 47–50.Google Scholar
  171. Wills, R. B. H., McGlasson, B., Graham, D., & Joyce, D. (1998). Postharvest: An introduction to the physiology and handling of fruit, vegetables and ornamentals (4th ed.). Wallingford: CAB. International.Google Scholar
  172. Wills, R. B. H., Poi, A., Greenfield, H., & Rigney, C. J. (1984). Postharvest changes in fruit composition of Annona atemoya during ripening and effects of storage temperature on ripening. HortScience, 19, 96–97.Google Scholar
  173. Zhu, X., Luo, J., JunLi, Q. L., Liu, T., Wang, R., Chen, W., & Li, X. (2018). Low temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Biology and Technology, 146, 68–78.CrossRefGoogle Scholar
  174. Yang, S. F. (1981). Biosynthesis of ethylene and its regulation. In J. Friend & M. J. C. Rhodes (Eds.), Recent advances in the biochemistry of fruit and vegetables (pp. 89–106). London: Academic.Google Scholar
  175. Yang, S. F., & Ho, H. K. (1958). Biochemical studies on post-ripening of banana. Journal of the Chinese Chemical Society, 5, 1–98.CrossRefGoogle Scholar
  176. Yang, S. F., & Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 35, 155–189.CrossRefGoogle Scholar
  177. Yoo, S.-D., Cho, Y., & Sheen, J. (2009). Emerging connections in the ethylene signaling network. Trends in Plant Science, 14, 270–279.PubMedPubMedCentralCrossRefGoogle Scholar
  178. Youryon, P., & Supapvanich, S. (2017). Physicochemical quality and antioxidant changes in ‘Leb Mue Nang’ banana fruit during ripening. Agriculture and Natural Resources, 51, 47–52.CrossRefGoogle Scholar
  179. Zhang, M., Jiang, Y., Jiang, W., & Liu, X. (2006). Regulation of ethylene synthesis of harvested banana fruit by 1-MCP. Food Technology and Biotechnology, 44, 111–115.Google Scholar
  180. Zhang, M., Leng, P., Zhang, G., & Li, X. (2009). Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology, 166, 1241–1252.PubMedGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anthony Keith Thompson
    • 1
  • Suriyan Supapvanich
    • 1
  • Jiraporn Sirison
    • 1
  1. 1.King Mongkut’s Institute of Technology LadkrabangBangkokThailand

Personalised recommendations