Skip to main content

Fruit Ripening

  • Chapter
  • First Online:
Banana Ripening

Abstract

Bananas are climacteric fruit and are harvested at the pre-climacteric phase and ripened postharvest. Ripening begins when the endogenous concentration of ethylene reaches a critical level. There are many changes that occur to the fruit during the ripening process including colour, texture, aroma and taste. These physical and chemical changes and the way in which fruit are ripened can affect these characteristics which in turn can affect their quality, acceptability and nutritional status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, D. O., & Yang, S. F. (1979). Ethylene biosynthesis: identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proceeding of the National Academy of Sciences of the United States of America, 76, 170–174.

    Article  CAS  Google Scholar 

  • Adão, R. C., & Glória, M. B. A. (2005). Bioactive amines and carbohydrate changes during ripening of ‘Prata’ banana (Musa acuminata × M. balbisiana). Food Chemistry, 90, 705–711.

    Article  CAS  Google Scholar 

  • Adeyemi, O. S., & Oladiji, A. T. (2009). Compositional changes in banana (Musa spp.) fruits during ripening. African Journal of Biotechnology, 8, 858–859.

    CAS  Google Scholar 

  • Ahmad, S., & Thompson, A. K. (2006). Effect of controlled atmosphere storage on ripening and quality of banana fruit. Journal of Horticultural Science & Biotechnology, 81, 1021–1024.

    Article  Google Scholar 

  • Ahmad, S., Thompson, A. K., & Perviez, M. A. (2007). Effect of harvest maturity stage and hand positions on the ripening behaviour and quality of banana fruit. Acta Horticulturae, 741.

    Google Scholar 

  • Alonso, J. M., Hirayama, T., Roman, G., Nourizadeh, S., & Ecker, J. R. (1999). EIN2, a bifunctional transducer of ethylene and stress responses in Arabidopsis. Science, 284, 2148–2152.

    Article  CAS  PubMed  Google Scholar 

  • Anhwange, B., Ugye, J. T., & Nyiatagher, T. D. (2009). Chemical composition of Musa sepientum (banana) peels. Electronic Journal of Environmental, Agricultural and Food Chemistry, 8, 437–442.

    CAS  Google Scholar 

  • Anonymous. (2019). Ripelock. https://www.agrofresh.com/technologies/ripelock/. Accessed 7 April 2019.

  • Arora, A., Choudhary, D., Agarwal, G., & Singh, V. P. (2008). Compositional variation in β-carotene content, carbohydrate and antioxidant enzymes in selected banana cultivars. Institute of Food Science and Technology, 43, 1913–1921.

    CAS  Google Scholar 

  • Ball, K. L., Green, J. H., & Ap Rees, T. (1991). Glycolysis at the climacteric bananas. European Journal of Biochemistry, 197, 265–269.

    Article  CAS  PubMed  Google Scholar 

  • Barnell, H. R. (1943). Studies in tropical fruits. Carbohydrate metabolism of the banana fruit during storage at 53 °F. Annals of Botany New Series, 9, 1–22.

    Google Scholar 

  • Barry, C. S., & Giovannoni, J. J. (2007). Ethylene and fruit ripening. Journal of Plant Growth Regulation, 26, 143–159.

    Article  CAS  Google Scholar 

  • Baskar, R., Shrisakthi, S., Sathyapriya, B., Shyampriya, R., Nithya, R., & Poongodi, P. (2011). Antioxidant potential of peel extracts of banana varieties (Musa sapientum). Food and Nutrition Sciences, 2, 1128–1133.

    Article  CAS  Google Scholar 

  • Beatrice, E., Deborah, N., & Guy, B. (2015). Provitamin A carotenoid content of unripe and ripe banana cultivars for potential adoption in eastern. African Journal of Food Composition and Analysis, 43, 1–6.

    Article  CAS  Google Scholar 

  • Belitz, H. D., Grosch, W., & Schierberle, P. (2009). Food chemistry (4th ed.). Springer Publications.

    Google Scholar 

  • Bennett, R. N., Shiga, T. M., Hassimotto, N. M., Rosa, E. A., Lajolo, F. M., & Cordenunsi, B. R. (2010). Phenolics and antioxidant properties of fruit pulp and cell wall fractions of postharvest banana (Musa acuminata Juss.) cultivars. Journal of Agricultural and Food Chemistry, 58, 7991–8003.

    Article  CAS  PubMed  Google Scholar 

  • Bhova, H. P., Patel, J. C., & Amin, H. D. (1978). Effect of Ethrel on ripening of some varieties of mango (Mangifera indica L.) fruits. Indian Journal of Agricultural Research, 12, 263–265.

    Google Scholar 

  • Biale, J. B. (1964). Growth, maturation and senescence in fruits. Science, 146, 880–888.

    Article  CAS  PubMed  Google Scholar 

  • Blackbourn, H. D., Jeger, M. J., John, P., & Thompson, A. K. (1990). Inhibition of degreening in the peel of bananas ripened at tropical temperatures, III changes in plastid ultrastructure and chlorophyll-protein complexes accompanying ripening in bananas and plantains. Annals of Applied Biology, 117, 147–161.

    CAS  Google Scholar 

  • Blackbourn, H. D., Jeger, M. J., John, P., Telfer, A., & Barber, J. (1990a). Inhibition of degreening in the peel of bananas ripened at tropical temperatures. IV. Phytosynthetic capacity of ripening bananas and plantains in relation to changes in the lipid composition of ripening banana peel. Annals of Applied Biology, 117, 163–174.

    Article  CAS  Google Scholar 

  • Bouzayen, M., Latché, A., Nath, P., & Pech, J. C. (2010). Mechanism of fruit ripening. Chapter 16. In Plant developmental biology – biotechnological perspectives (Vol. 1). Springer.

    Google Scholar 

  • Bowden, A. P., Khanbari, O., Wei, Y., & Thompson, A. K. (1994). Implications of genetic variation on the marketing of fruit and vegetables. Aspects of Applied Biology, 39, 103–110.

    Google Scholar 

  • Brady, C. J. (1987). Fruit ripening. Annual Review of Plant Physiology, 38, 155–178.

    Article  CAS  Google Scholar 

  • Brat, P., Yahia, A., Chillet, M., Bugaud, C., Bakry, F., Reynes, M., & Brillouet, J. M. (2004). Influence of cultivar, growth altitude and maturity stage on banana volatile compound composition. Fruits, 59, 75–82.

    Article  CAS  Google Scholar 

  • Bugaud, C., Alter, P., Daribo, M. O., & Brillouet, J. M. (2009). Comparison of the physico-chemical characteristics of a new triploid banana hybrid, FLHORBAN920, and the Cavendish variety. Journal of the Science of Food and Agriculture, 89, 407–413.

    Article  CAS  Google Scholar 

  • Burg, S. P., & Burg, E. A. (1967). Molecular requirements for the biological activity of ethylene. Plant Physiology, 42, 144–152.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell, C. W., & Malo, S. E. (1969). The effect of 2-chloroethyl phosphonic acid on ripening of mango fruits. Proceedings of the American Society for Horticultural Science, 13, 221–226.

    Google Scholar 

  • Cano, M. P., de Ancos, B., Matallana, M. C., Cámara, M., Reglero, G., & Tabera, J. (1997). Differences among Spanish and Latin-American banana cultivars: Morphological, chemical and sensory characteristics. Food Chemistry, 59, 411–419.

    Article  CAS  Google Scholar 

  • Chillet, M., de Lapeyre de Bellaire, L., Huber, B., & Mbéguié-A- Mbéguié, D. (2008). Measurement of banana green life. Fruits, 63, 125–127.

    Article  Google Scholar 

  • Collin, M. N. (1989). Conservation de bananes plantains sous film plastique et polyolefines. IRFA Reunion Annuelle, 37, 7.

    Google Scholar 

  • Collin, M. N., & Dalnic, R. (1991). Evolution de quelques criteres physico-chimiques de la banane plantain (cultivar Orishele) au cours de la maturation. Fruits, 46, 13–17.

    CAS  Google Scholar 

  • Collin, M. N., & Folliot, M. (1990). Caracteristiques anatomiques de I’epiderme de la banane plantain en relation avec les techniques de conservation. Fruits, 45, 9–16.

    Google Scholar 

  • Cordenunsi, B. R., & Lajolo, F. M. (1995). Starch breakdown during banana ripening: Sucrose synthase and sucrose phosphate synthase. Journal of Agricultural and Food Chemistry, 43, 347–351.

    Article  CAS  Google Scholar 

  • Davey, M. W., Van den Bergh, I., Markham, R., Swennen, R., & Keulemans, J. (2009). Genetic variability in Musa fruit provitamin A carotenoids, lutein and mineral micronutrient contents. Food Chemistry, 115, 806–813.

    Article  CAS  Google Scholar 

  • Davies, K., Hobson, G. E., & Grierson, D. (2006). Silver ions inhibit the ethylene-stimulated production of ripening-related mRNAs in tomato. Plant Cell and Environment, 11, 729–738.

    Google Scholar 

  • Deekshika, B., Praveena Lakshmi, B., Singuluri, H., & Sukumaran, M. K. (2015). Estimation of ascorbic acid content in fruits & vegetables from Hyderabad, India – A theoretical assessment of Vitamin C activity. International Journal of Current Microbiology and Applied Sciences, 4, 96–99.

    CAS  Google Scholar 

  • Desai, B. B., & Deshpande, P. B. (1975). Chemical transformations in three varieties of banana Musa paradisica Linn fruits stored at 20 °C. Mysore Journal of Agricultural Science, 9, 634–643.

    CAS  Google Scholar 

  • Dominguez-Puigjaner, E., Vendrell, M., & Dolors Ludevid, M. (1992). Differential protein accumulation in banana fruit during ripening. Plant Physiology, 98, 157–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan, X., Joyce, D. C., & Jiang, Y. (2007). Postharvest biology and handling of banana fruit. Fresh Produce, 1, 140–152.

    Google Scholar 

  • Elitzur, T., Vrebalov, J., Giovannoni, J. J., Goldschmidt, E. E., & Friedman, H. (2010). The regulation of MADS-box gene expression during ripening of banana and their regulatory interaction with ethylene. Journal of Experimental Botany, 61, 1523–1535.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elitzur, T., Yakir, E., Quansah, L., Zhangjun, F., Vrebalov, J., Khayat, E., Giovannoni, J. J., & Friedman, H. (2016). Banana MaMADS transcription factors are necessary for 14 fruit ripening and molecular tools to promote shelf-life and food security. Plant Physiology, 171, 380–391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englberger, L., Wills, R. B., Blades, B., Dufficy, L., Daniells, J. W., & Coyne, T. (2006). Carotenoid content and flesh color of selected banana cultivars growing in Australia. Food and Nutrition Bulletin, 27, 281–291.

    Article  PubMed  Google Scholar 

  • Esguerra, E. B., Hilario, D. C. R., & Absulio, W. L. (2009). Control of finger drop in ‘Latundan’ banana (Musa acuminata AA group) with preharvest calcium spray. Acta Horticulturae, 837, 167–170.

    Article  CAS  Google Scholar 

  • Fatemeh, S. R., Saifullah, R., Abbas, F. M. A., & Azhar, M. E. (2012). Total phenolics, flavonoids and antioxidant activity of banana pulp and peel flours: Influence of variety and stage of ripeness. International Food Research Journal, 19, 1041–1046.

    CAS  Google Scholar 

  • Ferris, R. S. B., Wainwright, H., & Thompson, A. K. (1995). The effects of morphology, maturity and genotype on the ripening and susceptibility of plantains (AAB) to mechanical damage. Fruits, 50, 45–50.

    Google Scholar 

  • Finger, F. L., Puschmann, R., & Santos Barros, R. (1995). Effects of water loss on respiration, ethylene production and ripening of banana fruit. Revista Brasileira de Fisiologia Vegetal, 7, 115–118.

    CAS  Google Scholar 

  • Forster, M., Rodríguez-Rodríguez, E. M., Darias-Martín, J., & Díaz, C. (2003). Distribution of nutrients in edible banana pulp. Food Technology and Biotechnology, 41, 167–171.

    CAS  Google Scholar 

  • Fuchs, Y., Zauberman, G., Yanko, U., & Homsky, S. (1975). Ripening of mango fruits with ethylene. Tropical Science, 17, 211–216.

    CAS  Google Scholar 

  • García-Salinas, C., Ramos-Parra, P. A., & Díaz de la Garza, R. I. (2016). Ethylene treatment induces changes in folate profiles in climacteric fruit during postharvest ripening. Postharvest Biology and Technology, 118, 43–50.

    Article  CAS  Google Scholar 

  • George, J. B. (1981). Storage and ripening of plantains. University of London UK, PhD thesis.

    Google Scholar 

  • Giovannoni, J. (2001). Molecular biology of fruit maturation and ripening. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 725–749.

    Article  CAS  PubMed  Google Scholar 

  • Golding, J. B., Shearer, D., Wyllie, S. G., & McGlasson, W. B. (1998). Application of 1-MCP and propylene to identify ethylene-dependent ripening processes in mature banana fruit. Postharvest Biology and Technology, 14, 87–98.

    Article  CAS  Google Scholar 

  • Golding, J. B., Shearer, D., McGlasson, W. B., & Wyllie, S. G. (1999). Relationships between respiration, ethylene, and aroma production in ripening banana. Journal of Agriculture and Food Chemistry, 47, 1646–1651.

    Article  CAS  Google Scholar 

  • Gross, J., & Flugel, M. (1982). Pigment changes in peel of the ripening banana (Musa cavendish). Gartenbauwissenschaft, 47, 62–64.

    CAS  Google Scholar 

  • Hamilton, A. J., Lycett, G. W., & Grierson, D. (1990). Antisense gene that inhibits synthesis of the hormone ethylene in transgenic plants. Nature, 346, 284–287.

    Article  CAS  Google Scholar 

  • Han, Y.-c., Chang-chun, F., Kuang, J.-f., Chen, J.-y., & Lu, W.-j. (2016). Two banana fruit ripening-related C2H2 zinc finger proteins are transcriptional repressors of ethylene biosynthetic genes. Postharvest Biology and Technology, 116, 8–15.

    Article  CAS  Google Scholar 

  • Hardisson, A., Rubio, C., Baez, A., Martin, M., Alvarez, R., & Diaz, E. (2001). Mineral composition of the banana (Musa acuminata) from the island of Tenerife. Food Chemistry, 73, 153–161.

    Article  CAS  Google Scholar 

  • Hubbard, N. L., Pharr, D. M., & Huber, S. C. (1990). Role of sucrose phosphate synthase in sucrose biosynthesis in ripening bananas and its relationship to the respiratory climacteric. Plant Physiology, 94, 201–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber, D. J. (1983). Polyuronide degredation and hermicellulose modifications in ripening tomato fruits. Journal of the American Society for Horticultural Science, 108, 405–409.

    CAS  Google Scholar 

  • Huber, O., & Mbéguié-A-Mbéguié, D. (2012). Expression patterns of ethylene biosynthesis genes from bananas during fruit ripening and in relationship with finger drop. AOB Plants. https://doi.org/10.1093/aobpla/pls041.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imahori, Y., Yamamoto, K., Tanaka, H., & Bai, J. (2013). Residual effects of low oxygen storage of mature green fruit on ripening processes and ester biosynthesis during ripening in bananas. Postharvest Biology and Technology, 77, 19–27.

    CAS  Google Scholar 

  • Imam, M. Z., & Akter, S. (2011). Musa paradisiaca L. and Musa sapientum L.: A phytochemical and pharmacological review. Journal of Applied Pharmaceutical Science, 1, 14–20.

    Google Scholar 

  • Inaba, A., & Nakamura, R. (1986). Effect of exogenous ethylene concentration and fruit temperature on the minimum treatment time necessary to induce ripening in banana fruit. Journal of the Japanese Society for Horticultural Science, 55, 348–354.

    Article  Google Scholar 

  • Inaba, A., & Nakamura, R. (1988). Numerical expression for estimating the minimum ethylene exposure time necessary to induce ripening in banana fruit. Journal of the American Society for Horticultural Science, 561–564.

    Google Scholar 

  • Iqbal, N., Khan, N., Ferrante, A., Trivellini, A., Francini, A., & Khan, M. I. (2017). Ethylene role in plant growth, development and senescence: Interaction with other phytohormone. Frontiers in Plant Science, 8, 475. https://doi.org/10.3389/fpls.2017.00475.

    Article  PubMed  PubMed Central  Google Scholar 

  • Izonfuo, W. A. L., & Omuaru, V. O. T. (1988). Effect of ripening on the chemical composition of plantain peels and pulps (Musa paradisiaca). Journal of the Science of Food and Agriculture, 45, 333–336.

    Article  CAS  Google Scholar 

  • Jayanty, S., Song, J., Rubinstein, N. M., Chong, A., & Beaudry, R. M. (2002). Temporal relationship between ester biosynthesis and ripening events in bananas. Journal of the American Society for Horticultural Science, 127, 998–1005.

    Article  CAS  Google Scholar 

  • Jedermann, R., Praeger, U., Geyer, M., Moehrke, A., & Lang, W. (2015). The intelligent container for banana transport supervision and ripening. Acta Horticulturae, 1091, 213–220.

    Article  Google Scholar 

  • Jiang, Y., Joyce, D. C., & Macnish, A. J. (2000). Effect of abscisic acid on banana fruit ripening in relation to the role of ethylene. Journal of Plant Growth Regulation, 19, 106–111.

    CAS  PubMed  Google Scholar 

  • Johnson, P., & Ecker, J. R. (1998). The ethylene gas signaling pathway in plants: A molecular perspective. Annual Review of Genetics, 32, 227–254.

    Article  CAS  PubMed  Google Scholar 

  • Jordan, R., Seelye, R., & McGlone, A. (2001). A sensory-based alternative to brix/acid ratio. Food Technology, 55, 36–44.

    CAS  Google Scholar 

  • Junior, A. V., Nascimento, J. R. O. D., & Lajolo, F. M. (2006). Molecular cloning and characterization of an α-amylase occurring in the pulp of ripening bananas and its expression in Pichia pastoris. Journal of Agricultural and Food Chemistry, 54, 8222–8228.

    Article  PubMed  CAS  Google Scholar 

  • Kamdee, C., Ketsa, S., & van Doorn, W. G. (2018). Effect of heat treatment on ripening and early peel spotting in Sucrier banana. Postharvest Biology and Technology, 52, 288–293.

    Article  CAS  Google Scholar 

  • Kanazawa, K., & Sakakibara, H. (2000). High content of dopamine, a strong antioxidant, in Cavendish banana. Journal of Agricultural and Food Chemistry, 48, 844–848.

    Article  CAS  PubMed  Google Scholar 

  • Kanellis, A. K., Solomos, T., & Mattoo, A. K. (1989a). Hydrolytic enzyme activities and protein pattern of avocado fruit ripened in air and in low oxygen, with and without ethylene. Plant Physiology, 90, 259–266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanellis, A. K., Loulakakis, K. A., Hassan, M., & Roubelakis-Angelakis, K. A. (1993). Biochemical and molecular aspects of low oxygen action on fruit ripening. In C. J. Pech, A. Latche, & C. Balague (Eds.), Cellular and molecular aspects of the plant hormone ethylene (pp. 117–122). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Karikari, S. K., Marriot, J., & Hutchins, P. (1979). Changes during the respiratory climacteric in ripening plantain fruits. Scientia Horticulturae, 10, 369–376.

    Article  Google Scholar 

  • Karmawan, L. U., Suhandono, S., & Dwivany, F. M. (2009). Isolation of MA-ACS gene family and expression study of MA-ACS1 gene in Musa acuminata cultivar Pisang Ambon Lumut. HAYATI Journal of Biosciences, 16, 35–39.

    Article  Google Scholar 

  • Kays, S. J., & Paull, R. E. (2004). Metabolic processes in harvested products. In Postharvest biology (pp. 79–136). Athens: Exon Press.

    Google Scholar 

  • Ke, L. S., & Tsai, P. L. (1988). Changes in the ACC content and EFE activity in the peel and pulp of banana fruits during ripening in relation to ethylene production. Journal of the Agricultural Association of China, 143, 48–60.

    CAS  Google Scholar 

  • Kendrick, M. D., & Chang, C. (2008). Ethylene signaling: New levels of complexity and regulation. Current Opinion in Plant Biology, 11, 479–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klieber, A., Bagnato, N., Barrett, R., & Sedgley, M. (2002). Effect of post-ripening nitrogen atmosphere storage on banana shelf-life, visual appearance and aroma. Postharvest Biology and Technology, 25, 15–24.

    CAS  Google Scholar 

  • Kuang, J.-F., Chen, L., Shan, W., Yang, S., Lu, W.-j., & Chen, J.-y. (2013). Molecular characterization of two banana ethylene signaling component MaEBFs during fruit ripening. Postharvest Biology and Technology, 85, 94–101.

    Article  CAS  Google Scholar 

  • Larotonda, F. D. S., Genena, A. K., Dantela, D., Soares, H. M., Laurindo, J. B., Moreira, R. F. P. M., & Ferreira, S. R. S. (2008). Study of banana (Musa aaa Cavendish cv Nancia) trigger ripening for small scale process. Brazilian Archives of Biology and Technology, 51, 1033–1047.

    Article  CAS  Google Scholar 

  • Lee, P. J. (2008). Facts about banana potassium. http://ezinearticlescom/?Facts-About-Banana-Potassium&id=1762995 Accessed Oct 2009.

  • Leong, L. P., & Shui, G. (2002). An investigation of antioxidant capacity of fruits in Singapore markets. Food Chemistry, 76, 69–75.

    Article  CAS  Google Scholar 

  • Liu, F. W. (1976a). Correlation between banana storage life and minimum treatment time required for ethylene response. Journal of the American Society for Horticultural Science, 101, 63–65.

    CAS  Google Scholar 

  • Liu, F. W. (1976b). Banana response to low concentration of ethylene. Journal of the American Society for Horticultural Science, 101, 222–225.

    CAS  Google Scholar 

  • Liu, F. W. (1976c). Storing ethylene pretreated bananas in controlled atmosphere and hypobared air. Journal of the American Society for Horticultural Science, 101, 198–201.

    CAS  Google Scholar 

  • Liu, X., Shiomi, S., Nakatsuka, A., Kubo, Y., Nakamura, R., & Inaba, A. (1999). Characterization of ethylene biosynthesis associated with ripening in banana fruit. Plant Physiology, 121, 1257–1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R., Wang, Y., Qin, G., & Tian, S. (2016). Molecular basis of 1-methylcyclopropene regulating organic acid metabolism in apple fruit during storage. Postharvest Biology and Technology, 117, 57–63.

    CAS  Google Scholar 

  • Lizada, M. C. C., Pantastico, E. B., Abdullah Shukor, A. R., & Sabari, S. D. (1990). Ripening of banana. In H. Abdulla & E. B. Pantastico (Eds.), Banana (pp. 65–84). Association of Southeast Asian Nations Food Handling Bureau.

    Google Scholar 

  • Lohani, S., Trivedi, P. K., & Nath, P. (2004). Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: Effect of 1-MCP, ABA and IAA. Postharvest Biology and Technology, 31(2), 119–126.

    CAS  Google Scholar 

  • Lòpez-Gòmez, R., Campbell, A., Dong, J. G., Yang, S. F., & Gòmez-Lim, M. A. (1997). Ethylene biosynthesis in banana fruit: Isolation of a genomic clone to ACC oxidase and expression studies. Plant Science, 123, 123–131.

    Article  Google Scholar 

  • Loulakakis, C. A., Hassan, M., Gerasopoulos, D., & Kanellis, A. K. (2006). Effects of low oxygen on in vitro translation products of poly(A) + RNA, cellulase and alcohol dehydrogenase expression in preclimacteric and ripening-initiated avocado fruit. Postharvest Biology and Technology, 39, 29–37.

    Article  CAS  Google Scholar 

  • Madamba, S. P., Baes, A. U., & Mendoza, D. B., Jr. (1977). Effect of maturity on some biochemical changes during ripening of banana Musa sepientum cv. Lakatan. Food Chemistry, 2, 177–183.

    Article  Google Scholar 

  • Maneenuam, T., Ketsa, S., & Van Doorn, W. G. (2007). High oxygen levels promote peel spotting in banana fruit. Postharvest Biology and Technology, 43, 128–132.

    Article  CAS  Google Scholar 

  • Manrique-Trujillo, S. M., Ramírez-Lόpez, A. C., Ibarra-Laclette, E., & GόmezLim, M. A. (2007). Identification of genes differentially expressed during ripening of banana. Journal of Plant Physiology, 164, 1037–1050.

    Article  CAS  PubMed  Google Scholar 

  • Marchal, J., & Mallessard, R. (1979). Comparison des immobilisations minerales de quatre cultivars de bananiers a fruits pour cuisson et de deux ‘Cavendish’. Fruits, 34, 373–392.

    CAS  Google Scholar 

  • Marchal, J., Nolin, J., & Letorey, J. (1988). Influence sur la maturation de I’enrobage de bananes avec du Semperfresh. Fruits, 43, 447–453.

    Google Scholar 

  • Marriott, J., & New, S. (1975). Storage physiology of bananas from new tetrapolid clones. Tropical Science, 17, 155–163.

    Google Scholar 

  • Marriott, J., New, S., Dixon, E. A., & Martin, K. J. (1979). Factors affecting the preclimacteric period of banana fruit bunches. Annals of Applied Biology, 93, 91–100.

    Article  Google Scholar 

  • McCarthy, A. L., Palmer, J. K., Shaw, C. P., & Anderson, E. E. (1963). Correlation of gas chromatographic data with flavour profiles of fresh banana fruit. Journal of Food Science, 28, 379–384.

    Article  CAS  Google Scholar 

  • McMurchie, E. J., McGlasson, W. B., & Eaks, I. L. (1972). Treatment of fruit with propylene gives information about the biogenesis of ethylene. Nature, 237, 235–236.

    Article  CAS  PubMed  Google Scholar 

  • Medlicott, A. P., Sigrist, J. M. M., Reynolds, S. B., & Thompson, A. K. (1987). Effects of ethylene and acetylene on mango fruit ripening. Annals of Applied Biology, 111, 439–444.

    Article  CAS  Google Scholar 

  • Medlicott, A. P., Semple, A. J., Thompson, A. J., Blackbourne, H. R., & Thompson, A. K. (1992). Measurement of colour changes in ripening bananas and mangoes by instrumental, chemical and visual assessments. Tropical Agriculture, 69, 161–166.

    CAS  Google Scholar 

  • Minas, I. S., Font, I., Forcada, C., Dangl, G. S., Gradziel, T. M., Dandekar, A. M., & Crisosto, C. H. (2015). Discovery of non-climacteric and suppressed climacteric bud sport mutations originating from a climacteric Japanese plum cultivar (Prunus salicina Lindl.) Frontiers of Plant Science 6, 316 https://doi.org/10.3389/fpls.2015.00316 Accessed 4 May 2019.

  • Montenegro, E. H. (1988). Postharvest behaviour of banana harvested at different stages of maturity. BS student project, University of the Phillipines, Los Baños, Laguna.

    Google Scholar 

  • Mura, K., & Tanimura, W. (2003). Changes in polyphenol compounds in banana pulp during ripening. Food Preservation Science, 29, 347–351.

    Article  Google Scholar 

  • Mustaffa, R., Osman, A., Yusof, S., & Mohamed, S. (1998). Physico-chemical changes in Cavendish banana (Musa cavendishii L var. Montel) at different positions within a bunch during development and maturation. Journal of the Science of Food and Agriculture, 78, 201–207.

    Article  CAS  Google Scholar 

  • New, S., & Marriott, J. (1974). Post-harvest physiology of tetraploid banana fruit: Response to storage and ripening. Annals of Applied Biology, 78, 193–204.

    Article  CAS  Google Scholar 

  • New, S., & Marriott, J. (1983). Factors affecting the development of finger drop in bananas after ripening. Journal of Food Technology, 18, 241–250.

    Article  Google Scholar 

  • Nogueira, J. M., Fernandes, P. J., & Nascimento, A. M. (2003). Composition of volatiles of banana cultivars from Madeira Island. Phytochemical Analysis, 14, 87–90.

    Article  CAS  PubMed  Google Scholar 

  • Nolin, J. (1985). Etat de maturite des bananes (Giant Cavendish) a la recolte, une nouvelle methode de mesure. Fruits, 40, 623–631.

    Google Scholar 

  • Noysang, C., Buranasukhon, W., & Khuanekkaphan, M. (2019). Phytochemicals and pharmacological activities from banana fruits of several Musa species for using as cosmetic raw materials. Applied Mechanics and Materials, 891, 30–40.

    Article  Google Scholar 

  • Palmer, J. K. (1971). The banana. In A. C. Hulme (Ed.), The biochemistry of fruits and their products (Vol. 2). Academic: London.

    Google Scholar 

  • Pathak, N., Asif, M. H., Dhawan, P., Srivastava, M. K., & Nath, P. (2003). Expression and activities of ethylene biosynthesis enzymes during ripening in banana fruit and effect of 1-MCP treatment. Plant Growth Regulation, 40, 11–19.

    CAS  Google Scholar 

  • Paul, V., Pandey, R., & Srivastava, G. C. (2012). The fading distinctions between classical patterns of ripening in climacteric and non-climacteric fruit and the ubiquity of ethylene-An overview. Journal of Food Science and Technology, 49, 1–21.

    Article  CAS  PubMed  Google Scholar 

  • Paull, R. E. (1996). Ethylene, storage and ripening temperatures affect Dwarf Brazilian banana finger drop. Postharvest Biology and Technology, 8, 65–74.

    Article  Google Scholar 

  • Pereira, L. C., Ngoh Newilah, G. B., Davey, M. W., & Van den Bergh, I. (2011). Validation of rapid (colour-based) prescreening techniques for analysis of fruit provitamin A contents in banana (Musa spp.). Acta Horticulturae, 897, 161–168.

    Article  Google Scholar 

  • Peroni-Okita, F. H. G., Cardoso, M. B., Agopian, R. G. D., Louro, R. P., Nascimento, J. R. O., & Purgatto, E. (2013). The cold storage of green bananas affects the starch degradation during ripening at higher temperature. Carbohydrate Polymers, 96, 137–147.

    Article  CAS  PubMed  Google Scholar 

  • Pontes, M., Pereira, J., & Câmara, J. S. (2012). Dynamic headspace solid-phase microextraction combined with one-dimensional gas chromatography–mass spectrometry as a powerful tool to differentiate banana cultivars based on their volatile metabolite profile. Food Chemistry, 134, 2509–2520.

    Article  CAS  PubMed  Google Scholar 

  • Puraikalan, Y. (2018). Characterization of proximate, phytochemical and antioxidant analysis of banana (Musa sapientum) peels/skins and objective evaluation of ready to eat /cook product made with banana peels. Current Research in Nutrition and Food Science, 6. https://doi.org/10.12944/CRNFSJ.6.2.13.

    Article  Google Scholar 

  • Purgatto, E., Lajolo, F. M., Oliveira do Nascimento, J. R., & Cordenunsi, B. R. (2001). Inhibition of β-amylase activity, starch degradation and sucrose formation by indole-3-acetic acid during banana ripening. Planta, 212, 823–828.

    CAS  PubMed  Google Scholar 

  • Romero, I., Sanchez-Ballesta, M. T., Maldonado, R., Escribano, M. I., & Merodio, C. (2008). Anthocyanin, antioxidant activity and stress-induced gene expression in high CO2-treated table grapes stored at low temperature. Journal of Plant Physiology, 165, 522–530.

    Article  CAS  PubMed  Google Scholar 

  • Romphophak, T., Siriphanich, J., Promdang, S., & Ueda, Y. (2004). Effect of modified atmosphere storage on the shelf life of banana ‘Sucrier’. Journal of Horticultural Science & Biotechnology, 79, 659–663.

    Article  Google Scholar 

  • Rothan, C., Duret, S., Chevalier, C., & Raymond, P. (1997). Suppression of ripening associated gene expression in tomato fruit subjected to a high CO2 concentration. Plant Physiology, 114, 255–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salmon, B., Martin, G. J., Remaud, G., & Fourel, F. (1996). Compositional and isotopic studies of fruit flavours. Part I. The banana aroma. Flavour and Fragrance Journal, 11, 353–359.

    Article  CAS  Google Scholar 

  • Saltveit, M., Bradford, K. J., & Dilley, D. R. (1978). Silver ion inhibits ethylene synthesis and action in ripening fruits. Journal of the American Society for Horticultural Science, 103, 472–475.

    CAS  Google Scholar 

  • Sanaeifar, A., Mohtasebi, S. S., Ghasemi-Varnamkhasti, M., Ahmadi, H., & Lozano, J. (2014). Development and application of a new low-cost electronic nose for the ripeness monitoring of banana using computational techniques (PCA, LDA, SIMCA, and SVM). Czech Journal of Food Sciences, 32, 538–548.

    Article  Google Scholar 

  • Seenappa, M., Laswai, M., & Fernando, S. P. F. (1986). Availability of L-ascorbic acid in Tanzanian banana. Journal of Food Science and Technology, 23, 293–295.

    CAS  Google Scholar 

  • Semple, A. J., & Thompson, A. K. (1988). Influence of the ripening environment on the development of finger drop in bananas. Journal of the Science of Food Agriculture, 46, 139–146.

    Article  Google Scholar 

  • Seymour, G. B. (1986). The effect of gases and temperature on banana ripening. PhD thesis, University of Reading.

    Google Scholar 

  • Seymour, G. B., Thompson, A. K., & John, P. (1987). Inhibition of degreening in the peel of bananas ripened at tropical temperatures. 1. Effect of high temperature on changes in the pulp and peel during ripening. Annals of Applied Biology, 110, 145–151.

    Google Scholar 

  • Seymour, G. B., Ryder, C. D., Cevik, V., Hammond, J. P., Popovich, A., King, G. J., Vrebalov, J., Giovannoni, J. J., & Manning, K. (2011). A SEPALLA total acidity gene is involved in the development and ripening of strawberry (Fragaria×ananassa Duch.) fruit, a non-climacteric tissue. Journal of Experimental Botany, 62, 1179–1188.

    Article  CAS  PubMed  Google Scholar 

  • Seymour, G. B., Chapman, N. H., Chew, B. L., & Rose, J. K. C. (2013). Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnology Journal, 11, 269–278.

    Article  CAS  PubMed  Google Scholar 

  • Sheng, K., Zheng, H., Shui, S. S., Yan, L., & Zheng, L. (2018). Comparison of postharvest UV-B and UV-C treatments on table grape: changes in phenolic compounds and their transcription of biosynthetic genes during storage. Postharvest Biology and Technology, 138, 74–81.

    Article  CAS  Google Scholar 

  • Shiota, H. (1993). New esteric compounds in the volatiles of banana fruit (Musa sapientum L.). Journal of Agricultural and Food Chemistry, 41, 2056–2062.

    Article  CAS  Google Scholar 

  • Sidhu, S. S., & Zafar, T. A. (2018). Bioactive compounds in banana fruits and their health benefits. Food Quality and Safety, 2, 183–188.

    Article  CAS  Google Scholar 

  • Slaughter, M. L. D. C., & Thompson, J. F. (1997). Optical chlorophyll sensing system for banana ripening. Postharvest Biology and Technology, 12, 273–283.

    Article  Google Scholar 

  • Smith, N. J. S. (1989). Textural and biochemical changes during ripening of bananas. University of Nottingham, PhD thesis.

    Google Scholar 

  • Smith, N. J. S., & Seymour, G. B. (1990). Cell wall changes in bananas and plantains. Acta Horticulturae, 269, 283–289.

    Article  Google Scholar 

  • Solomos, T., & Biale, J. B. (1975). Facteurs et regulation de la maturation des fruits. Colloque Internationaux du Center National de la Recherche Scientifique, 238, 221–228.

    Google Scholar 

  • Soltani, M., Alimardani, R., & Omid, M. (2011). Evaluating banana ripening status from measuring dielectric properties. Journal of Food Engineering, 105, 625–631.

    Article  Google Scholar 

  • Song, M., Tang, L., Zhang, X., Bai, M., Pang, X., & Zhang, Z. (2015). Effects of high CO2 treatment on green-ripening and peel senescence in banana and plantain fruits. Journal of Integrative Agriculture, 14, 875–887.

    Article  CAS  Google Scholar 

  • Stepanova, A. N., & Alonso, J. M. (2005). Ethylene signalling and response pathway a unique signalling cascade with a multitude of inputs and outputs. Physiologia Plantarum, 123, 195–206.

    Article  CAS  Google Scholar 

  • Stover, R. H., & Simmonds, N. W. (1987). Bananas (3rd ed.). London: Longmans.

    Google Scholar 

  • Sultan, S., & Rangaraju, V. (2014). Changes in colour value of banana var. Grand Naine during ripening. Bioscience Trends, 7, 726–728.

    Google Scholar 

  • Thompson, A. K., & Burden, O. J. (1995). Harvesting and fruit care. In S. Gowen (Ed.), Bananas and plantains (pp. 403–433). London: Chapman and Hall.

    Google Scholar 

  • Thompson, A. K. (1996). Postharvest technology of fruits and vegetables. London: Blackwell Science.

    Google Scholar 

  • Thompson, A. K., Been, B. O., & Perkins, C. (1972). Handling, storage and marketing of plantains. Proceedings of the Tropical Region of the American Society of Horticultural Science, 16, 205–212.

    Google Scholar 

  • Toledo, T. T., Nogueira, S. B., Cordenunsi, B. R., Gozzo, F. C., Pilau, E. J., Lajolo, F. M., & Oliveira do Nascimento, J. R. (2012). Proteomic analysis of banana fruit reveals proteins that are differentially accumulated during ripening. Postharvest Biology and Technology, 62, 51–58.

    Article  CAS  Google Scholar 

  • Tonutti, P. (2015). The technical evolution of CA storage protocols and the advancements in elucidating the fruit responses to low oxygen stress. Acta Horticulturae, 1079, 53–60.

    Article  Google Scholar 

  • Tressl, R., & Jennings, W. G. (1972). Production of volatile compounds in the ripening banana. Journal of Agricultural and Food Chemistry, 20, 189–192.

    Article  CAS  Google Scholar 

  • Tucker, G. A. (1993). Introduction. In G. Seymour, J. Taylor, & G. A. Tucker (Eds.), Biochemistry of fruit ripening. Cambridge: Cambridge University Press.

    Google Scholar 

  • USDA. (2012). Nutrient database. http://www.nal.usda.gov/fnic/foodcomp/Data/SR17/wtrank/sr17a306.pdf. Accessed Oct 2012.

  • Vanderslice, J. T., Higgs, D. J., Hayes, J. M., & Block, G. (1990). Ascorbic acid and dehydroascorbic acid content of foods-as-eaten. Journal of Food Composition and Analysis, 3, 105–118.

    Article  CAS  Google Scholar 

  • Venkata Subbaiah, K., Jagadeesh, S. L., Thammaiah, N., & Chavan, M. L. (2013). Changes in physico-chemical and sensory characteristics of banana fruit cv. Grand Naine during ripening. Karnataka Journal of Agricultural Sciences, 26, 111–114.

    Google Scholar 

  • Vermeir, S., Hertog, M. L. A. T. M., Vankerschaver, K., Swennen, R., Nicolai, B. M., & Lammertyn, J. (2009). Instrumental based flavour characterization of banana fruit. LWT – Food Science and Technology, 42, 1647–1653.

    Article  CAS  Google Scholar 

  • Vilela, C., Santos, S. A., Villaverde, J. J., Oliveira, L., Nunes, A., Cordeiro, N., Freire, C. S., & Silvestre, A. J. (2014). Lipophilic phytochemicals from banana fruits of several Musa species. Food Chemistry, 162, 247–252.

    Article  CAS  PubMed  Google Scholar 

  • Von Loesecke, H. W. (1949). Bananas. London: Interscience.

    Google Scholar 

  • Wade, N. L. (1995). Membrane lipid composition and tissue leakage of pre- and early- climacteric banana fruit. Postharvest Biology and Technology, 5, 139–147.

    Article  CAS  Google Scholar 

  • Wade, N. L., O’Connell, P. B. H., & Brady, C. J. (1972). Content of RNA and protein of the ripening banana. Phytochemistry, 11, 975–979.

    Article  CAS  Google Scholar 

  • Wall, M. M. (2006). Ascorbic acid, vitamin A, and mineral composition of banana (Musa sp.) and papaya (Carica papaya) cultivars grown in Hawaii. Journal of Food Composition and Analysis, 19, 434–445.

    Article  CAS  Google Scholar 

  • Wardlaw, C. W. (1961). Banana diseases. London: Longmans.

    Google Scholar 

  • Wardlaw, C. W., Leonard, E. R., & Barnell, H. R. (1939). Metabolic and storage investigations of the banana. Low Temperature Research Station, Memoir 11. Imperial College of Tropical Agriculture, Low Temperature Research Station.

    Google Scholar 

  • Wei, Y., & Thompson A. K. (1993). Modified atmosphere packaging of diploid bananas (Musa AA). Post-harvest Treatment of Fruit and Vegetables. COST’94 Workshop, September 14 to 15 1993, Leuven.

    Google Scholar 

  • Wendakoon, S. K., Ueda, Y., Imahori, Y., & Ishimaru, M. (2006). Effect of short-term anaerobic conditions on the production of volatiles, activity of alcohol acetyltransferase and other quality traits of ripened bananas. Journal of the Science of Food and Agriculture, 86, 1475–1480.

    Article  CAS  Google Scholar 

  • Wenkam, N. S. (1990). Food of Hawaii and the Pacific basin, fruits and fruit products: Raw, processed, and prepared. Volume 4: Composition. Hawaii Agricultural Experiment Station Research and Extension Series 110.

    Google Scholar 

  • Wills, R. B. H. (1990). Postharvest technology of banana and papaya in Association of Southeast Asian Nations: An overview. Association of Southeast Asian Nations Food Journal, 5, 47–50.

    Google Scholar 

  • Wills, R. B. H., McGlasson, B., Graham, D., & Joyce, D. (1998). Postharvest: An introduction to the physiology and handling of fruit, vegetables and ornamentals (4th ed.). Wallingford: CAB. International.

    Google Scholar 

  • Wills, R. B. H., Poi, A., Greenfield, H., & Rigney, C. J. (1984). Postharvest changes in fruit composition of Annona atemoya during ripening and effects of storage temperature on ripening. HortScience, 19, 96–97.

    CAS  Google Scholar 

  • Zhu, X., Luo, J., JunLi, Q. L., Liu, T., Wang, R., Chen, W., & Li, X. (2018). Low temperature storage reduces aroma-related volatiles production during shelf-life of banana fruit mainly by regulating key genes involved in volatile biosynthetic pathways. Postharvest Biology and Technology, 146, 68–78.

    Article  CAS  Google Scholar 

  • Yang, S. F. (1981). Biosynthesis of ethylene and its regulation. In J. Friend & M. J. C. Rhodes (Eds.), Recent advances in the biochemistry of fruit and vegetables (pp. 89–106). London: Academic.

    Google Scholar 

  • Yang, S. F., & Ho, H. K. (1958). Biochemical studies on post-ripening of banana. Journal of the Chinese Chemical Society, 5, 1–98.

    Article  Google Scholar 

  • Yang, S. F., & Hoffman, N. E. (1984). Ethylene biosynthesis and its regulation in higher plants. Annual Review of Plant Physiology, 35, 155–189.

    Article  CAS  Google Scholar 

  • Yoo, S.-D., Cho, Y., & Sheen, J. (2009). Emerging connections in the ethylene signaling network. Trends in Plant Science, 14, 270–279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Youryon, P., & Supapvanich, S. (2017). Physicochemical quality and antioxidant changes in ‘Leb Mue Nang’ banana fruit during ripening. Agriculture and Natural Resources, 51, 47–52.

    Article  Google Scholar 

  • Zhang, M., Jiang, Y., Jiang, W., & Liu, X. (2006). Regulation of ethylene synthesis of harvested banana fruit by 1-MCP. Food Technology and Biotechnology, 44, 111–115.

    CAS  Google Scholar 

  • Zhang, M., Leng, P., Zhang, G., & Li, X. (2009). Cloning and functional analysis of 9-cis-epoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. Journal of Plant Physiology, 166, 1241–1252.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thompson, A.K., Supapvanich, S., Sirison, J. (2019). Fruit Ripening. In: Banana Ripening. SpringerBriefs in Food, Health, and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-030-27739-0_3

Download citation

Publish with us

Policies and ethics