Skip to main content

Genomics, Proteomics, and Metabolomics of Cancer Stem Cells (CSCs)

  • Chapter
  • First Online:

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Cancer stem cells (CSCs) are just projected as the cancer triggering cells in charge of both tumor genesis and cancer resistance. While the theory of CSCs originates from that of normal stem cells, CSC is not necessarily aberrant counterparts of normal stem cells. CSCs can be the origin of circulating tumor cells (CTCs) which are releasing from tumor and shed into the vasculature or lymphatic. CTC and CSC are suggested as tools for recognition and classification of disease and individualization of therapy in patients with many solid tumors. In fact, the genetic and epigenetic of CSCs are different from both normal stem cells and tumoral cells. In order to find the best discriminating differences and basic tumor genesis pathway we should know the comprehensive profile of genomics, proteomics, metabolomics, transcriptomics, and epigenomics. Over the last decade, key advancements in omic have assisted high-throughput monitoring of a diversity of molecular and organismal processes. To date, a variety of software have been developed to make effective integration of OMICS-based analyses of several solid tumors to the new targeted cancer therapies. In this chapter we have discussed the CSCs, CTCs from OMICS perspectives.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    CD44+CD24−/low Lineage: A subpopulation of breast cancer isolated based on flow cytometry and cell surface antigens.

  2. 2.

    JAK-STAT signaling pathway: Janus kinases (JAKs), signal transducer and activator of transcription (STAT) proteins.

  3. 3.

    Hox genes: A subset of homeotic genes are a group of related genes that control the body plan of an embryo along the head–tail axis.

  4. 4.

    PBX: Pre-B cell leukemia transcription factor.

  5. 5.

    MEIS: Myeloid ecotropic viral integration site 1 homolog.

  6. 6.

    GATA2: GATA binding protein 2.

  7. 7.

    MEST: Mesoderm specific transcript homolog.

  8. 8.

    DAVID: The database for annotation, visualization, and integrated discovery.

  9. 9.

    KEGG: Kyoto Encyclopedia of Genes and Genomes.

  10. 10.

    Yamanaka factors: Oct3/4, Sox2, Klf4, c-Myc as the highly expressed protein in embryonic stem (ES) cells inducing pluripotency in both mouse and human somatic cells and regulating the developmental signaling network necessary for ES cell pluripotency.

  11. 11.

    Organoid: Tiny, self-organized three-dimensional tissue cultures that are derived from stem cells.

  12. 12.

    CNS: Central nervous system.

  13. 13.

    Tandem mass spectrometry, also known as MS/MS or MS2, involves multiple steps of mass spectrometry selection, with some form of fragmentation occurring in between the stages.

  14. 14.

    DZNep: Deazaneplanocin A, histone methyltransferase inhibitor.

  15. 15.

    Methylome: The set of nucleic acid methylation modifications in an organism’s genome or in a particular cell.

  16. 16.

    iPSCs: Induced pluripotent stem cells are a type of pluripotent stem cell that can be generated directly from adult cells.

References

  1. Moore KA, Lemischka IR. Stem cells and their niches. Science. 2006;311(5769):1880–5.

    Article  CAS  PubMed  Google Scholar 

  2. Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105.

    Article  CAS  PubMed  Google Scholar 

  3. Ashkenazi R, Gentry SN, Jackson TL. Pathways to tumorigenesis—modeling mutation acquisition in stem cells and their progeny. Neoplasia. 2008;10(11):IN1–6.

    Article  CAS  Google Scholar 

  4. Guo X, Wang X-F. Signaling cross-talk between TGF-β/BMP and other pathways. Cell Res. 2009;19(1):71.

    Article  CAS  PubMed  Google Scholar 

  5. Riquet M, Rivera C, Gibault L, Pricopi C, Mordant P, Badia A, et al. Lymphatic spread of lung cancer: anatomical lymph node chains unchained in zones. Rev Pneumol Clin. 2014;70(1–2):16–25.

    Article  CAS  PubMed  Google Scholar 

  6. Gupta GP, Massagué J. Cancer metastasis: building a framework. Cell. 2006;127(4):679–95.

    Article  CAS  PubMed  Google Scholar 

  7. Ashworth T. A case of cancer in which cells similar to those in the tumours were seen in the blood after death. Med J Aust. 1869;14:146.

    Google Scholar 

  8. Racila E, Euhus D, Weiss AJ, Rao C, McConnell J, Terstappen LW, et al. Detection and characterization of carcinoma cells in the blood. Proc Natl Acad Sci. 1998;95(8):4589–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Khatami F, Larijani B, Tavangar SM. The presence of tumor extrachomosomal circular DNA (ecDNA) as a component of liquid biopsy in blood. Med Hypotheses. 2018;114:5–7.

    Article  CAS  PubMed  Google Scholar 

  10. Khatami F, Tavangar SM. Liquid biopsy in thyroid cancer: new insight. Int J Hematol Oncol Stem Cell Res. 2018;12(3):234–47.

    Google Scholar 

  11. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645.

    Article  CAS  PubMed  Google Scholar 

  12. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci. 2003;100(7):3983–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer Res. 2003;63(18):5821–8.

    CAS  PubMed  Google Scholar 

  14. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kelly PN, Dakic A, Adams JM, Nutt SL, Strasser A. Tumor growth need not be driven by rare cancer stem cells. Science. 2007;317(5836):337.

    Article  CAS  PubMed  Google Scholar 

  16. Yoo M-H, Hatfield DL. The cancer stem cell theory: is it correct? Mol Cells. 2008;26(5):514.

    CAS  PubMed  Google Scholar 

  17. Liu X, Fan D. The epithelial-mesenchymal transition and cancer stem cells: functional and mechanistic links. Curr Pharm Des. 2015;21(10):1279–91.

    Article  CAS  PubMed  Google Scholar 

  18. Ishiwata T. Cancer stem cells and epithelial-mesenchymal transition: novel therapeutic targets for cancer. Pathol Int. 2016;66(11):601–8.

    Article  CAS  PubMed  Google Scholar 

  19. Vailati-Riboni M, Palombo V, Loor JJ. What are omics sciences? In: Ametaj BN, editor. Periparturient diseases of dairy cows. Cham: Springer; 2017. p. 1–7.

    Google Scholar 

  20. Yugi K, Kubota H, Hatano A, Kuroda S. Trans-omics: how to reconstruct biochemical networks across multiple ‘omic’ layers. Trends Biotechnol. 2016;34(4):276–90.

    Article  CAS  PubMed  Google Scholar 

  21. Morozova O, Marra MA. Applications of next-generation sequencing technologies in functional genomics. Genomics. 2008;92(5):255–64.

    Article  CAS  PubMed  Google Scholar 

  22. Tomczak K, Czerwińska P, Wiznerowicz M. The cancer genome atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol. 2015;19(1A):A68.

    Google Scholar 

  23. The future of cancer genomics. Nat Med. 2015;21:99.

    Google Scholar 

  24. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2(5):401–4.

    Article  PubMed  Google Scholar 

  25. Regenbrecht CRA, Lehrach H, Adjaye J. Stemming cancer: functional genomics of cancer stem cells in solid tumors. Stem Cell Rev. 2008;4(4):319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. He X, Gonzalez V, Tsang A, Thompson J, Tsang TC, Harris DT. Differential gene expression profiling of CD34+ CD133+ umbilical cord blood hematopoietic stem progenitor cells. Stem Cells Dev. 2005;14(2):188–98.

    Article  CAS  PubMed  Google Scholar 

  27. Huang TS, Hsieh JY, Wu YH, Jen CH, Tsuang YH, Chiou SH, et al. Functional network reconstruction reveals somatic stemness genetic maps and dedifferentiation-like transcriptome reprogramming induced by GATA2. Stem Cells. 2008;26(5):1186–201.

    Article  CAS  PubMed  Google Scholar 

  28. Advani AS, Rodriguez C, Jin T, Jawde RA, Saber W, Baz R, et al. Increased C-kit intensity is a poor prognostic factor for progression-free and overall survival in patients with newly diagnosed AML. Leuk Res. 2008;32(6):913–8.

    Article  CAS  PubMed  Google Scholar 

  29. Boissel N, Leroy H, Brethon B, Philippe N, De Botton S, Auvrignon A, et al. Incidence and prognostic impact of c-Kit, FLT3, and Ras gene mutations in core binding factor acute myeloid leukemia (CBF-AML). Leukemia. 2006;20(6):965.

    Article  CAS  PubMed  Google Scholar 

  30. Stanulla M, Welte K, Hadam MR, Pietsch T. Coexpression of stem cell factor and its receptor c-Kit in human malignant glioma cell lines. Acta Neuropathol. 1995;89(2):158–65.

    Article  CAS  PubMed  Google Scholar 

  31. Musci TJ, Amaya E, Kirschner MW. Regulation of the fibroblast growth factor receptor in early Xenopus embryos. Proc Natl Acad Sci. 1990;87(21):8365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishita Y, Sado T, Yoshida I, Takagi N. Effect of CpG methylation on expression of the mouse imprinted gene Mest. Gene. 1999;226(2):199–209.

    Article  CAS  PubMed  Google Scholar 

  33. Dennis G, Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, et al. DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 2003;4(9):R60.

    Article  PubMed Central  Google Scholar 

  34. Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Karamboulas C, Ailles L. Developmental signaling pathways in cancer stem cells of solid tumors. Biochim Biophys Acta. 2013;1830(2):2481–95.

    Article  CAS  PubMed  Google Scholar 

  36. Sell S. Cancer stem cells and differentiation therapy. Tumor Biol. 2006;27(2):59–70.

    Article  Google Scholar 

  37. Zhang T, Xu J, Deng S, Zhou F, Li J, Zhang L, et al. Core signaling pathways in ovarian cancer stem cell revealed by integrative analysis of multi-marker genomics data. PLoS One. 2018;13(5):e0196351.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Matsumura N, Yamanoi K, Murphy SK, Hamanishi J, Abiko K, Yamaguchi K, et al. Abstract A38: identification through functional genomics screening of factors whose downregulation enhances the side population in ovarian cancer. Clin Cancer Res. 2016;22(2 Suppl):A38.

    Google Scholar 

  39. Chen Y-A, Lu C-Y, Cheng W-F, Ho H-N, Cheng H-F. Propagating the ovarian cancer stem cells by reprogramming the tumor cells. FASEB J. 2017;31(1_suppl):395.1.

    Google Scholar 

  40. Cortina C, Turon G, Stork D, Hernando-Momblona X, Sevillano M, Aguilera M, et al. A genome editing approach to study cancer stem cells in human tumors. EMBO Mol Med. 2017;9(7):869–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lohr JG, Adalsteinsson VA, Cibulskis K, Choudhury AD, Rosenberg M, Cruz-Gordillo P, et al. Whole-exome sequencing of circulating tumor cells provides a window into metastatic prostate cancer. Nat Biotechnol. 2014;32(5):479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Premasekharan G, Gilbert E, Okimoto RA, Hamirani A, Lindquist KJ, Ngo VT, et al. An improved CTC isolation scheme for pairing with downstream genomics: demonstrating clinical utility in metastatic prostate, lung and pancreatic cancer. Cancer Lett. 2016;380(1):144–52.

    Article  CAS  PubMed  Google Scholar 

  43. Gupta S, Li J, Kemeny G, Bitting RL, Beaver J, Somarelli JA, et al. Whole genomic copy number alterations in circulating tumor cells from men with abiraterone or enzalutamide-resistant metastatic castration-resistant prostate cancer. Clin Cancer Res. 2017;23(5):1346–57.

    Article  CAS  PubMed  Google Scholar 

  44. Singhal U, Wang Y, Henderson J, Niknafs YS, Qiao Y, Gursky A, et al. Multigene profiling of CTCs in mCRPC identifies a clinically relevant prognostic signature. Mol Cancer Res. 2018;16(4):643–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Castro-Giner F, Scheidmann MC, Aceto N. Beyond enumeration: functional and computational analysis of circulating tumor cells to investigate cancer metastasis. Front Med. 2018;5:34.

    Article  Google Scholar 

  46. Carter L, Rothwell DG, Mesquita B, Smowton C, Leong HS, Fernandez-Gutierrez F, et al. Molecular analysis of circulating tumor cells identifies distinct copy-number profiles in patients with chemosensitive and chemorefractory small-cell lung cancer. Nat Med. 2017;23(1):114.

    Article  CAS  PubMed  Google Scholar 

  47. Hou Y, Song L, Zhu P, Zhang B, Tao Y, Xu X, et al. Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell. 2012;148(5):873–85.

    Article  CAS  PubMed  Google Scholar 

  48. Lodato MA, Woodworth MB, Lee S, Evrony GD, Mehta BK, Karger A, et al. Somatic mutation in single human neurons tracks developmental and transcriptional history. Science. 2015;350(6256):94–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zafar H, Wang Y, Nakhleh L, Navin N, Chen K. Monovar: single-nucleotide variant detection in single cells. Nat Methods. 2016;13(6):505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gawad C, Koh W, Quake SR. Single-cell genome sequencing: current state of the science. Nat Rev Genet. 2016;17(3):175.

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y, Navin NE. Advances and applications of single-cell sequencing technologies. Mol Cell. 2015;58(4):598–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garvin T, Aboukhalil R, Kendall J, Baslan T, Atwal GS, Hicks J, et al. Interactive analysis and assessment of single-cell copy-number variations. Nat Methods. 2015;12(11):1058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hou Y, Fan W, Yan L, Li R, Lian Y, Huang J, et al. Genome analyses of single human oocytes. Cell. 2013;155(7):1492–506.

    Article  CAS  PubMed  Google Scholar 

  54. Knouse KA, Wu J, Amon A. Assessment of megabase-scale somatic copy number variation using single-cell sequencing. Genome Res. 2016;26(3):376–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. McConnell MJ, Lindberg MR, Brennand KJ, Piper JC, Voet T, Cowing-Zitron C, et al. Mosaic copy number variation in human neurons. Science. 2013;342(6158):632–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Anderson NL, Anderson NG. Proteome and proteomics: new technologies, new concepts, and new words. Electrophoresis. 1998;19(11):1853–61.

    Article  CAS  PubMed  Google Scholar 

  57. Blackstock WP, Weir MP. Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol. 1999;17(3):121–7.

    Article  CAS  PubMed  Google Scholar 

  58. James P. Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys. 1997;30(4):279–331.

    Article  CAS  PubMed  Google Scholar 

  59. Swinbanks D. Australia backs innovation, shuns telescope. Nature. 1995;378(6558):653.

    Article  PubMed  Google Scholar 

  60. Bi B, Li F, Guo J, Li C, Jing R, Lv X, et al. Label-free quantitative proteomics unravels the importance of RNA processing in glioma malignancy. Neuroscience. 2017;351:84–95.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang W, Liu T, Dong H, Bai H, Tian F, Shi Z, et al. Synthesis of a highly azide-reactive and thermosensitive biofunctional reagent for efficient enrichment and large-scale identification of O-GlcNAc proteins by mass spectrometry. Anal Chem. 2017;89(11):5810–7.

    Article  CAS  PubMed  Google Scholar 

  62. Webber JP, Stone TC, Katilius E, Smith BC, Gordon B, Mason MD, et al. Proteomics analysis of cancer exosomes using a novel modified aptamer-based array (SOMAscan™) platform. Mol Cell Proteomics. 2014;13(4):1050–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zaccaria A, Bouamrani A, Selek L, El Atifi M, Hesse AM. Juhem Al, et al. a micro-silicon chip for in vivo cerebral imprint in monkey. ACS Chem Neurosci. 2013;4(3):385–92.

    Article  CAS  PubMed  Google Scholar 

  64. Ji L, Jayachandran G, Roth JA. High throughput profiling of serum phosphoproteins/peptides using the SELDI-TOF-MS platform. Methods Mol Biol. 2012;818:199–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Li S, Sack R, Vijmasi T, Sathe S, Beaton A, Quigley D, et al. Antibody protein array analysis of the tear film cytokines. Optom Vis Sci. 2008;85(8):653.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Gupta S, Manubhai K, Kulkarni V, Srivastava S. An overview of innovations and industrial solutions in protein microarray technology. Proteomics. 2016;16(8):1297–308.

    Article  CAS  PubMed  Google Scholar 

  67. Cox J, Hein MY, Luber CA, Paron I, Nagaraj N, Mann M. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol Cell Proteomics. 2014;13(9):2513–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kanojia D, Zhou W, Zhang J, Jie C, Lo PK, Wang Q, et al. Proteomic profiling of cancer stem cells derived from primary tumors of HER2/Neu transgenic mice. Proteomics. 2012;12(22):3407–15.

    Article  CAS  PubMed  Google Scholar 

  69. Nie S, McDermott SP, Deol Y, Tan Z, Wicha MS, Lubman DM. A quantitative proteomics analysis of MCF7 breast cancer stem and progenitor cell populations. Proteomics. 2015;15(22):3772–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Lee E-K, Cho H, Kim C-W. Proteomic analysis of cancer stem cells in human prostate cancer cells. Biochem Biophys Res Commun. 2011;412(2):279–85.

    Article  CAS  PubMed  Google Scholar 

  71. Zhong Z, Mao S, Lin H, Lin J-M, Lin J. Comparative proteomics of cancer stem cells in osteosarcoma using ultra-high-performance liquid chromatography and Orbitrap fusion mass spectrometer. Talanta. 2018;178:362–8.

    Article  CAS  PubMed  Google Scholar 

  72. Ko CH, Cheng CF, Lai CP, Tzu TH, Chiu CW, Lin MW, et al. Differential proteomic analysis of cancer stem cell properties in hepatocellular carcinomas by isobaric tag labeling and mass spectrometry. J Proteome Res. 2013;12(8):3573–85.

    Article  CAS  PubMed  Google Scholar 

  73. Morisaki T, Yashiro M, Kakehashi A, Inagaki A, Kinoshita H, Fukuoka T, et al. Comparative proteomics analysis of gastric cancer stem cells. PLoS One. 2014;9(11):e110736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. van Houdt WJ, Emmink BL, Pham TV, Piersma SR, Verheem A, Vries R, et al. Comparative proteomics of colon cancer stem cells and differentiated tumor cells identifies BIRC6 as a potential therapeutic target. Mol Cell Proteomics. 2011;10(12):M111.011353.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Scatena R, Bottoni P, Giardina B. Circulating tumour cells and cancer stem cells: a role for proteomics in defining the interrelationships between function, phenotype and differentiation with potential clinical applications. Biochimica et Biophysica Acta (BBA)-reviews on. Cancer. 2013;1835(2):129–43.

    CAS  Google Scholar 

  76. Halvey PJ, Zhang B, Coffey RJ, Liebler DC, Slebos RJ. Proteomic consequences of a single gene mutation in a colorectal cancer model. J Proteome Res. 2011;11(2):1184–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Fang D, Kim Y, Lee C, Aggarwal S, McKinnon K, Mesmer D, et al. Expansion of CD133+ colon cancer cultures retaining stem cell properties to enable cancer stem cell target discovery. Br J Cancer. 2010;102(8):1265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Yen L, Cao Z, Wu X, Ingalla ER, Baron C, Young LJ, et al. Loss of Nrdp1 enhances ErbB2/ErbB3–dependent breast tumor cell growth. Cancer Res. 2006;66(23):11279–86.

    Article  CAS  PubMed  Google Scholar 

  79. Hermiston ML, Wong MH, Gordon JI. Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes Dev. 1996;10(8):985–96.

    Article  CAS  PubMed  Google Scholar 

  80. Chu Y-S, Eder O, Thomas WA, Simcha I, Pincet F, Ben-Ze’ev A, et al. Prototypical type I E-cadherin and type II cadherin-7 mediate very distinct adhesiveness through their extracellular domains. J Biol Chem. 2006;281(5):2901–10.

    Article  CAS  PubMed  Google Scholar 

  81. Berx G, Van Roy F. Involvement of members of the cadherin superfamily in cancer. Cold Spring Harb Perspect Biol. 2009;1(6):a003129.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mor-Vaknin N, Punturieri A, Sitwala K, Markovitz DM. Vimentin is secreted by activated macrophages. Nat Cell Biol. 2003;5(1):59.

    Article  CAS  PubMed  Google Scholar 

  83. Garg A, Barnes PF, Porgador A, Roy S, Wu S, Nanda JS, et al. Vimentin expressed on Mycobacterium tuberculosis-infected human monocytes is involved in binding to the NKp46 receptor. J Immunol. 2006;177(9):6192–8.

    Article  CAS  PubMed  Google Scholar 

  84. Chong WP, Zhou J, Law HK, Tu W, Lau YL. Natural killer cells become tolerogenic after interaction with apoptotic cells. Eur J Immunol. 2010;40(6):1718–27.

    Article  CAS  PubMed  Google Scholar 

  85. Halfteck GG, Elboim M, Gur C, Achdout H, Ghadially H, Mandelboim O. Enhanced in vivo growth of lymphoma tumors in the absence of the NK-activating receptor NKp46/NCR1. J Immunol. 2009;182(4):2221–30.

    Article  CAS  PubMed  Google Scholar 

  86. Lakshmikanth T, Burke S, Ali TH, Kimpfler S, Ursini F, Ruggeri L, et al. NCRs and DNAM-1 mediate NK cell recognition and lysis of human and mouse melanoma cell lines in vitro and in vivo. J Clin Invest. 2009;119(5):1251–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Annes JP, Chen Y, Munger JS, Rifkin DB. Integrin αVβ6-mediated activation of latent TGF-β requires the latent TGF-β binding protein-1. J Cell Biol. 2004;165(5):723–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Manti S, Marseglia L, D’Angelo G, Filippelli M, Cuppari C, Gitto E, et al. Portal hypertension as immune mediate disease. Hepat Mon. 2014;14(6):e18625.

    PubMed  PubMed Central  Google Scholar 

  89. Bandyopadhyay A, Raghavan S. Defining the role of integrin αvβ6 in cancer. Curr Drug Targets. 2009;10(7):645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Kong L, Sun J, Zhang C. The expression of integrinανβ6 and MMP-9 in gastric cancer and the correlation with clinicopathologic characteristic. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2011;27(1):92–4.

    CAS  PubMed  Google Scholar 

  91. Patsenker E, Wilkens L, Banz V, Österreicher C, Weimann R, Eisele S, et al. The αvβ6 integrin is a highly specific immunohistochemical marker for cholangiocarcinoma. J Hepatol. 2010;52(3):362–9.

    Article  CAS  PubMed  Google Scholar 

  92. Jacobs KM, Bhave SR, Ferraro DJ, Jaboin JJ, Hallahan DE, Thotala D. GSK-3β: a Bifunctional role in cell death pathways. Int J Cell Biol. 2012;2012:930710.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Luo J. The role of GSK3beta in the development of the central nervous system. Front Biol. 2012;7(3):212–20.

    Article  CAS  Google Scholar 

  94. Lee CF, Griffiths S, Rodríguez-Suárez E, Pierce A, Unwin RD, Jaworska E, et al. Assessment of downstream effectors of BCR/ABL protein tyrosine kinase using combined proteomic approaches. Proteomics. 2010;10(18):3321–42.

    Article  CAS  PubMed  Google Scholar 

  95. da Gama Fischer JDS, Liao L, Carvalho PC, Barbosa VC, Domont GB, da Costa Carvalho MDG, et al. Dynamic proteomic overview of glioblastoma cells (A172) exposed to perillyl alcohol. J Proteome. 2010;73(5):1018–27.

    Article  CAS  Google Scholar 

  96. Mishra R. Glycogen synthase kinase 3 beta: can it be a target for oral cancer. Mol Cancer. 2010;9(1):144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Oliver SG, Winson MK, Kell DB, Baganz F. Systematic functional analysis of the yeast genome. Trends Biotechnol. 1998;16(9):373–8.

    Article  CAS  PubMed  Google Scholar 

  98. Griffin JL, Vidal-Puig A. Current challenges in metabolomics for diabetes research: a vital functional genomic tool or just a ploy for gaining funding? Physiol genomics. 2017;34:1–5.

    Article  CAS  Google Scholar 

  99. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. HMDB 3.0—the human metabolome database in 2013. Nucleic Acids Res. 2012;41(D1):D801–D7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Sciacovelli M, Frezza C. Oncometabolites: unconventional triggers of oncogenic signalling cascades. Free Radic Biol Med. 2016;100:175–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Wishart DS, Mandal R, Stanislaus A, Ramirez-Gaona M. Cancer metabolomics and the human metabolome database. Meta. 2016;6(1):10.

    Google Scholar 

  102. Cuyàs E, Verdura S, Fernández-Arroyo S, Bosch-Barrera J, Martin-Castillo B, Joven J, et al. Metabolomic mapping of cancer stem cells for reducing and exploiting tumor heterogeneity. Oncotarget. 2017;8(59):99223–36.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Tabassum DP, Polyak K. Tumorigenesis: it takes a village. Nat Rev Cancer. 2015;15(8):473.

    Article  CAS  PubMed  Google Scholar 

  104. Menendez JA. The metaboloepigenetic dimension of cancer stem cells: evaluating the market potential for new metabostemness-targeting oncology drugs. Curr Pharm Des. 2015;21(25):3644–53.

    Article  CAS  PubMed  Google Scholar 

  105. Kind T, Tolstikov V, Fiehn O, Weiss RH. A comprehensive urinary metabolomic approach for identifying kidney cancer. Anal Biochem. 2007;363(2):185–95.

    Article  CAS  PubMed  Google Scholar 

  106. Jayaraman A, Kumar P, Marin S, de Atauri P, Mateo F, Thomson TM, et al. Untargeted metabolomics reveals distinct metabolic reprogramming in endothelial cells co-cultured with CSC and non-CSC prostate cancer cell subpopulations. PLoS One. 2018;13(2):e0192175.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16(1):6–21.

    Article  CAS  PubMed  Google Scholar 

  108. Epigenomics EV. Mapping the methylome. Cell Cycle. 2006;5(2):155–8.

    Article  Google Scholar 

  109. Jones PA, Takai D. The role of DNA methylation in mammalian epigenetics. Science. 2001;293(5532):1068–70.

    Article  CAS  PubMed  Google Scholar 

  110. Seligson DB, Horvath S, Shi T, Yu H, Tze S, Grunstein M, et al. Global histone modification patterns predict risk of prostate cancer recurrence. Nature. 2005;435(7046):1262.

    Article  CAS  PubMed  Google Scholar 

  111. Levy S, Sutton G, Ng PC, Feuk L, Halpern AL, Walenz BP, et al. The diploid genome sequence of an individual human. PLoS Biol. 2007;5(10):e254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, et al. The diploid genome sequence of an Asian individual. Nature. 2008;456(7218):60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Consortium IH. A haplotype map of the human genome. Nature. 2005;437(7063):1299.

    Article  CAS  Google Scholar 

  114. Consortium EP. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447(7146):799.

    Article  CAS  Google Scholar 

  115. López-Maury L, Marguerat S, Bähler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet. 2008;9(8):583.

    Article  PubMed  CAS  Google Scholar 

  116. Wilson VL, Jones PA, Momparler RL. Inhibition of DNA methylation in L1210 leukemic cells by 5-aza-2′-deoxycytidine as a possible mechanism of chemotherapeutic action. Cancer Res. 1983;43(8):3493–6.

    CAS  PubMed  Google Scholar 

  117. Jones PA. Altering gene expression with 5-azacytidine. Cell. 1985;40(3):485.

    Article  CAS  PubMed  Google Scholar 

  118. Jones PA, Issa J-PJ, Baylin S. Targeting the cancer epigenome for therapy. Nat Rev Genet. 2016;17(10):630.

    Article  CAS  PubMed  Google Scholar 

  119. Balic M, Schwarzenbacher D, Stanzer S, Heitzer E, Auer M, Geigl JB, et al. Genetic and epigenetic analysis of putative breast cancer stem cell models. BMC Cancer. 2013;13(1):358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hernandez-Vargas H, Ouzounova M, Le Calvez-Kelm F, Lambert M-P, McKay-Chopin S, Tavtigian SV, et al. Methylome analysis reveals Jak-STAT pathway deregulation in putative breast cancer stem cells. Epigenetics. 2011;6(4):428–39.

    Article  CAS  PubMed  Google Scholar 

  121. Kaur P, Mani S, Cros M-P, Scoazec J-Y, Chemin I, Hainaut P, et al. Epigenetic silencing of sFRP1 activates the canonical Wnt pathway and contributes to increased cell growth and proliferation in hepatocellular carcinoma. Tumor Biol. 2012;33(2):325–36.

    Article  CAS  Google Scholar 

  122. de Sousa e Melo F, Kurtova AV, Harnoss JM, Kljavin N, Hoeck JD, Hung J, et al. A distinct role for Lgr5+ stem cells in primary and metastatic colon cancer. Nature. 2017;543(7647):676.

    Article  PubMed  CAS  Google Scholar 

  123. Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A, Fujii M, et al. Visualization and targeting of LGR5+ human colon cancer stem cells. Nature. 2017;545(7653):187.

    Article  CAS  PubMed  Google Scholar 

  124. Feinberg AP, Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature. 1983;301(5895):89.

    Article  CAS  PubMed  Google Scholar 

  125. Gifford CA, Ziller MJ, Gu H, Trapnell C, Donaghey J, Tsankov A, et al. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell. 2013;153(5):1149–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hodges E, Molaro A, Dos Santos CO, Thekkat P, Song Q, Uren PJ, et al. Directional DNA methylation changes and complex intermediate states accompany lineage specificity in the adult hematopoietic compartment. Mol Cell. 2011;44(1):17–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Gopisetty G, Xu J, Sampath D, Colman H, Puduvalli V. Epigenetic regulation of CD133/PROM1 expression in glioma stem cells by Sp1/myc and promoter methylation. Oncogene. 2013;32(26):3119.

    Article  CAS  PubMed  Google Scholar 

  128. Baba T, Convery P, Matsumura N, Whitaker R, Kondoh E, Perry T, et al. Epigenetic regulation of CD133 and tumorigenicity of CD133+ ovarian cancer cells. Oncogene. 2009;28(2):209.

    Article  CAS  PubMed  Google Scholar 

  129. Kagara N, Huynh KT, Kuo C, Okano H, Sim MS, Elashoff D, et al. Epigenetic regulation of cancer stem cell genes in triple-negative breast cancer. Am J Pathol. 2012;181(1):257–67.

    Article  CAS  PubMed  Google Scholar 

  130. Yi JM, Tsai H-C, Glöckner SC, Lin S, Ohm JE, Easwaran H, et al. Abnormal DNA methylation of CD133 in colorectal and glioblastoma tumors. Cancer Res. 2008;68(19):8094–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Sun L, Mathews LA, Cabarcas SM, Zhang X, Yang A, Zhang Y, et al. Epigenetic regulation of SOX9 by the NF-κB signaling pathway in pancreatic cancer stem cells. Stem Cells. 2013;31(8):1454–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Trowbridge JJ, Sinha AU, Zhu N, Li M, Armstrong SA, Orkin SH. Haploinsufficiency of Dnmt1 impairs leukemia stem cell function through derepression of bivalent chromatin domains. Genes Dev. 2012;26(4):344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Pathania R, Ramachandran S, Elangovan S, Padia R, Yang P, Cinghu S, et al. DNMT1 is essential for mammary and cancer stem cell maintenance and tumorigenesis. Nat Commun. 2015;6:6910.

    Article  CAS  PubMed  Google Scholar 

  134. Liu CC, Lin JH, Hsu TW, Su K, Li AFY, Hsu HS, et al. IL-6 enriched lung cancer stem-like cell population by inhibition of cell cycle regulators via DNMT1 upregulation. Int J Cancer. 2015;136(3):547–59.

    CAS  PubMed  Google Scholar 

  135. Zagorac S, Alcala S, Bayon GF, Kheir TB, Schoenhals M, González-Neira A, et al. DNMT1 inhibition reprograms pancreatic cancer stem cells via upregulation of the miR-17-92 cluster. Cancer Res. 2016;76(15):4546–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Baylin SB, Jones PA. A decade of exploring the cancer epigenome—biological and translational implications. Nat Rev Cancer. 2011;11(10):726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Ito S, D’alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature. 2010;466(7310):1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Gu T-P, Guo F, Yang H, Wu H-P, Xu G-F, Liu W, et al. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature. 2011;477(7366):606.

    Article  CAS  PubMed  Google Scholar 

  139. Sato Y, Yoshizato T, Shiraishi Y, Maekawa S, Okuno Y, Kamura T, et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet. 2013;45(8):860.

    Article  CAS  PubMed  Google Scholar 

  140. Nickerson ML, Im KM, Misner KJ, Tan W, Lou H, Gold B, et al. Somatic alterations contributing to metastasis of a castration-resistant prostate cancer. Hum Mutat. 2013;34(9):1231–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhu Y. Microfluidic technology for low-input epigenomic analysis. Blacksburg: Virginia Tech; 2018.

    Google Scholar 

  142. Donohoe DR, Bultman SJ. Metaboloepigenetics: interrelationships between energy metabolism and epigenetic control of gene expression. J Cell Physiol. 2012;227(9):3169–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Lu C, Thompson CB. Metabolic regulation of epigenetics. Cell Metab. 2012;16(1):9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Katada S, Imhof A, Sassone-Corsi P. Connecting threads: epigenetics and metabolism. Cell. 2012;148(1–2):24–8.

    Article  CAS  PubMed  Google Scholar 

  145. Martinez-Pastor B, Cosentino C, Mostoslavsky R. A tale of metabolites: the cross-talk between chromatin and energy metabolism. Cancer Discov. 2013;3(5):497–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Salehzadeh-Yazdi A, Asgari Y, Saboury AA, Masoudi-Nejad A. Computational analysis of reciprocal association of metabolism and epigenetics in the budding yeast: a genome-scale metabolic model (GSMM) approach. PLoS One. 2014;9(11):e111686.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 2015;518(7539):413.

    Article  CAS  PubMed  Google Scholar 

  148. Teslaa T, Teitell MA. Pluripotent stem cell energy metabolism: an update. EMBO J. 2015;34(2):138–53.

    Article  CAS  PubMed  Google Scholar 

  149. Goding CR, Pei D, Lu X. Cancer: pathological nuclear reprogramming? Nat Rev Cancer. 2014;14(8):568.

    Article  CAS  PubMed  Google Scholar 

  150. Raabe EH, Eberhart CG. Methylome alterations “mark” new therapeutic opportunities in glioblastoma. Cancer Cell. 2012;22(4):417–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Khatami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Khatami, F., Tavangar, S.M., Pour, N.K. (2019). Genomics, Proteomics, and Metabolomics of Cancer Stem Cells (CSCs). In: Arjmand, B. (eds) Genomics, Proteomics, and Metabolomics. Stem Cell Biology and Regenerative Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-27727-7_9

Download citation

Publish with us

Policies and ethics