Skip to main content

Different Gene Expression Profile of Mesenchymal Stem Cells from Various Sources

  • Chapter
  • First Online:
Genomics, Proteomics, and Metabolomics

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL))

Abstract

Mesenchymal stem cells can be derived from different tissues of the body. It is important to select the suitable tissue that has the main characteristics of these types of cells. As we know, behind each specific property, a specific gene is expressed and the molecular process is in progress. Evaluating morphology, surface markers, potency, gene expression, and differentiation potential can be helpful to choose the most appropriate cellular source. These data considered a higher expression of chondrogenesis markers in bone marrow-derived and osteogenesis markers in umbilical cord blood-derived mesenchymal stem cells, and also an increase in angiogenesis and proliferation potential of umbilical cord mesenchymal stem cells. Comprehensive information of gene expression profile of mesenchymal stem cells can make it possible to use the mesenchymal stem cells in cell therapy, pharmacological tests, tissue engineering, and also has a positive role in omics studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SRY-box 2.

  2. 2.

    Octamer-binding transcription factor 4.

  3. 3.

    Nanog homeobox.

  4. 4.

    Mesenchymal stem cells.

  5. 5.

    Bone marrow-derived mesenchymal stem cells.

  6. 6.

    White adipose tissue.

  7. 7.

    Brown adipose tissue.

  8. 8.

    Adipose tissue-derived mesenchymal stem cells.

  9. 9.

    Umbilical cord blood mesenchymal stem cells

  10. 10.

    Netrin-1.

  11. 11.

    Wharton’s jelly-derived mesenchymal stem cells.

  12. 12.

    Insulin growth factor 1.

  13. 13.

    Insulin growth factor 2.

References

  1. Kalra K, Tomar P. Stem cell: basics, classification and applications. Am J Phytomed Clin Ther. 2014;2(7):919–30.

    Google Scholar 

  2. Bongso A, Lee EH. Stem cells: their definition, classification and sources. In: Stem cells: from bench to bedside. Singapore: World Scientific; 2005. p. 1–13.

    Google Scholar 

  3. Manganelli G, Fico A, Filosa S. Embryonic stem cells: from blastocyst to in vitro differentiation. In: Methodological advances in the culture, manipulation and utilization of embryonic stem cells for basic and practical applications. London: InTech; 2011.

    Google Scholar 

  4. Kolios G, Moodley Y. Introduction to stem cells and regenerative medicine. Respiration. 2013;85(1):3–10.

    Article  PubMed  Google Scholar 

  5. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35(2):e00191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Medvedev S, Shevchenko A, Zakian S. Induced pluripotent stem cells: problems and advantages when applying them in regenerative medicine. Acta Naturae. 2010;2(2):18–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cho S-G, Honguntikar S, Lee HJ. Application of magnet-based nanofection in embryonic stem cell research. In: Methodological advances in the culture, manipulation and utilization of embryonic stem cells for basic and practical applications. London: InTech; 2011.

    Google Scholar 

  8. Keller KC, zur Nieden NI. Osteogenesis from pluripotent stem cells: neural crest or mesodermal origin? In: Embryonic stem cells-differentiation and pluripotent alternatives. Singapore: InTech; 2011.

    Google Scholar 

  9. Arjmand B, Goodarzi P, Falahzadeh K, Aghayan HR, Rahim F, Mohamadi-Jahani F, et al. GMP-compliant perinatal tissue-derived stem cells. In: Perinatal tissue-derived stem cells. Berlin: Springer; 2016. p. 189–213.

    Chapter  Google Scholar 

  10. Yan X, Xu N, Meng C, Wang B, Yuan J, Wang C, et al. Generation of induced pluripotent stem cells from human mesenchymal stem cells of parotid gland origin. Am J Transl Res. 2016;8(2):419.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Ko SH, Nauta A, Wong V, Glotzbach J, Gurtner GC, Longaker MT. The role of stem cells in cutaneous wound healing: what do we really know? Plast Reconstr Surg. 2011;127:10S–20S.

    Article  CAS  PubMed  Google Scholar 

  12. Elahi KC, Klein G, Avci-Adali M, Sievert KD, MacNeil S, Aicher WK. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem Cells Int. 2016;2016:5646384.

    Article  PubMed  CAS  Google Scholar 

  13. Kobolak J, Dinnyes A, Memic A, Khademhosseini A, Mobasheri A. Mesenchymal stem cells: identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods. 2016;99:62–8.

    Article  CAS  PubMed  Google Scholar 

  14. Nishikiori R, Watanabe K, Kato K. Antibody arrays for quality control of mesenchymal stem cells. ACS Appl Mater Interfaces. 2015;7(30):16828–36.

    Article  CAS  PubMed  Google Scholar 

  15. Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med. 2016;37(1):115–25.

    Article  PubMed  Google Scholar 

  16. Wagner W, Wein F, Seckinger A, Frankhauser M, Wirkner U, Krause U, et al. Comparative characteristics of mesenchymal stem cells from human bone marrow, adipose tissue, and umbilical cord blood. Exp Hematol. 2005;33(11):1402–16.

    Article  CAS  PubMed  Google Scholar 

  17. Roson-Burgo B, Sanchez-Guijo F, Del Canizo C, De Las Rivas J. Transcriptomic portrait of human mesenchymal stromal/stem cells isolated from bone marrow and placenta. BMC Genomics. 2014;15:910.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bobis S, Jarocha D, Majka M. Mesenchymal stem cells: characteristics and clinical applications. Folia Histochem Cytobiol. 2006;44(4):215–30.

    CAS  PubMed  Google Scholar 

  19. Wong VW, Rustad KC, Longaker MT, Gurtner GC. Tissue engineering in plastic surgery: a review. Plast Reconstr Surg. 2010;126(3):858–68.

    Article  CAS  PubMed  Google Scholar 

  20. Friedenstein A, Latzinik N, Grosheva A, Gorskaya U. Marrow microenvironment transfer by heterotopic transplantation of freshly isolated and cultured cells in porous sponges. Exp Hematol. 1982;10(2):217–27.

    CAS  PubMed  Google Scholar 

  21. Kern S, Eichler H, Stoeve J, Klüter H, Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem cells. 2006;24(5):1294–301.

    Article  CAS  PubMed  Google Scholar 

  22. Ye N-S, Zhang R-L, Zhao Y-F, Feng X, Wang Y-M, Luo G-A. Effect of 5-azacytidine on the protein expression of porcine bone marrow mesenchymal stem cells in vitro. Genomics Proteomics Bioinformatics. 2006;4(1):18–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gilmore WS, Olwill S, McGlynn H, Alexander HD. Annexin A2 expression during cellular differentiation in myeloid cell lines. London: Portland Press Limited; 2004.

    Book  Google Scholar 

  24. Jacovina AT, Deora AB, Ling Q, Broekman MJ, Almeida D, Greenberg CB, et al. Homocysteine inhibits neoangiogenesis in mice through blockade of annexin A2–dependent fibrinolysis. J Clin Invest. 2009;119(11):3384–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Locke M, Windsor J, Dunbar PR. Human adipose-derived stem cells: isolation, characterization and applications in surgery. ANZ J Surg. 2009;79(4):235–44.

    Article  PubMed  Google Scholar 

  26. Venugopal P, Balasubramanian S, Majumdar AS, Ta M. Isolation, characterization, and gene expression analysis of Wharton’s jelly-derived mesenchymal stem cells under xeno-free culture conditions. Stem Cells Cloning. 2011;4:39–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Berry DC, Stenesen D, Zeve D, Graff JM. The developmental origins of adipose tissue. Development. 2013;140(19):3939–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martinez-Santibañez G, Cho KW, Lumeng CN. Imaging white adipose tissue with confocal microscopy. Methods Enzymol. 2014;537:17–30.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metabol. 2004;89(6):2548–56.

    Article  CAS  Google Scholar 

  30. Kang B-J, Ryu H-H, Park SS, Koyama Y, Kikuchi M, Woo H-M, et al. Comparing the osteogenic potential of canine mesenchymal stem cells derived from adipose tissues, bone marrow, umbilical cord blood, and Wharton’s jelly for treating bone defects. J Vet Sci. 2012;13(3):299–310.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rashnonejad A, Ercan G, Gunduz C, Akdemir A, Tiftikcioglu YO. Comparative analysis of human UCB and adipose tissue derived mesenchymal stem cells for their differentiation potential into brown and white adipocytes. Mol Biol Rep. 2018;45(3):233–44.

    Article  CAS  PubMed  Google Scholar 

  32. Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ, et al. Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells. 2004;22(7):1330–7.

    Article  PubMed  Google Scholar 

  33. Jin HJ, Bae YK, Kim M, Kwon S-J, Jeon HB, Choi SJ, et al. Comparative analysis of human mesenchymal stem cells from bone marrow, adipose tissue, and umbilical cord blood as sources of cell therapy. Int J Mol Sci. 2013;14(9):17986–8001.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Lee H-J, Jung J, Cho KJ, Lee CK, Hwang S-G, Kim GJ. Comparison of in vitro hepatogenic differentiation potential between various placenta-derived stem cells and other adult stem cells as an alternative source of functional hepatocytes. Differentiation. 2012;84(3):223–31.

    Article  CAS  PubMed  Google Scholar 

  35. Secco M, Moreira YB, Zucconi E, Vieira NM, Jazedje T, Muotri AR, et al. Gene expression profile of mesenchymal stem cells from paired umbilical cord units: cord is different from blood. Stem Cell Rev. 2009;5(4):387–401.

    Article  CAS  PubMed Central  Google Scholar 

  36. Chen M-Y, Lie P-C, Li Z-L, Wei X. Endothelial differentiation of Wharton’s jelly–derived mesenchymal stem cells in comparison with bone marrow–derived mesenchymal stem cells. Exp Hematol. 2009;37(5):629–40.

    Article  CAS  PubMed  Google Scholar 

  37. Panepucci RA, Siufi JL, Silva WA Jr, Proto-Siquiera R, Neder L, Orellana M, et al. Comparison of gene expression of umbilical cord vein and bone marrow-derived mesenchymal stem cells. Stem Cells. 2004;22(7):1263–78.

    Article  CAS  PubMed  Google Scholar 

  38. Zhou C, Yang B, Tian Y, Jiao H, Zheng W, Wang J, et al. Immunomodulatory effect of human umbilical cord Wharton’s jelly-derived mesenchymal stem cells on lymphocytes. Cell Immunol. 2011;272(1):33–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lim JJ, Koob TJ. Placental cells and tissues: the transformative rise in advanced wound care. In: Worldwide wound healing-innovation in natural and conventional methods. London: InTech; 2016.

    Google Scholar 

  40. Mitchell KE, Weiss ML, Mitchell BM, Martin P, Davis D, Morales L, et al. Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells. 2003;21(1):50–60.

    Article  CAS  PubMed  Google Scholar 

  41. Widowati W, Afifah E, Mozef T, Sandra F, Rizal R, Amalia A, et al. Effects of insulin-like growth factor-induced Wharton jelly mesenchymal stem cells toward chondrogenesis in an osteoarthritis model. Iran J Basic Med Sci. 2018;21(7):745–52.

    PubMed  PubMed Central  Google Scholar 

  42. Prieto CP, Ortiz MC, Villanueva A, Villarroel C, Edwards SS, Elliott M, et al. Netrin-1 acts as a non-canonical angiogenic factor produced by human Wharton’s jelly mesenchymal stem cells (WJ-MSC). Stem Cell Res Ther. 2017;8(1):43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Jurewicz E, Goral A, Filipek A. S100A6 is secreted from Wharton’s jelly mesenchymal stem cells and interacts with integrin beta1. Int J Biochem Cell Biol. 2014;55:298–303.

    Article  CAS  PubMed  Google Scholar 

  44. Jurewicz E, Kasacka I, Bankowski E, Filipek A. S100A6 and its extracellular targets in Wharton’s jelly of healthy and preeclamptic patients. Placenta. 2014;35(6):386–91.

    Article  CAS  PubMed  Google Scholar 

  45. Liu TM, Martina M, Hutmacher DW, Hui JHP, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow-and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells. 2007;25(3):750–60.

    Article  PubMed  CAS  Google Scholar 

  46. Medeiros Tavares Marques JC, Cornelio DA, Nogueira Silbiger V, Ducati Luchessi A, de Souza S, Batistuzzo de Medeiros SR. Identification of new genes associated to senescent and tumorigenic phenotypes in mesenchymal stem cells. Sci Rep. 2017;7(1):17837.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Bonab MM, Alimoghaddam K, Talebian F, Ghaffari SH, Ghavamzadeh A, Nikbin B. Aging of mesenchymal stem cell in vitro. BMC Cell Biol. 2006;7(1):14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Golpanian S, El-Khorazaty J, Mendizabal A, DiFede DL, Suncion VY, Karantalis V, et al. Effect of aging on human mesenchymal stem cell therapy in ischemic cardiomyopathy patients. J Am Coll Cardiol. 2015;65(2):125–32.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kyurkchiev S, Shterev A, Dimitrov R. Assessment of presence and characteristics of multipotent stromal cells in human endometrium and decidua. Reprod Biomed Online. 2010;20(3):305–13.

    Article  PubMed  Google Scholar 

  50. Lee D-K, Yi T, Park K-E, Lee H-J, Cho Y-K, Lee SJ, et al. Non-invasive characterization of the adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells by HS-SPME/GC-MS. Sci Rep. 2014;4:6550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ullah I, Subbarao Raghavendra B, Rho Gyu J. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35(2):e00191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Peng L, Jia Z, Yin X, Zhang X, Liu Y, Chen P, et al. Comparative analysis of mesenchymal stem cells from bone marrow, cartilage, and adipose tissue. Stem Cells Dev. 2008;17(4):761–74.

    Article  CAS  PubMed  Google Scholar 

  53. Langenbach F, Handschel J. Effects of dexamethasone, ascorbic acid and β-glycerophosphate on the osteogenic differentiation of stem cells in vitro. Stem Cell Res Ther. 2013;4(5):117.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Baksh D, Yao R, Tuan RS. Comparison of proliferative and multilineage differentiation potential of human mesenchymal stem cells derived from umbilical cord and bone marrow. Stem Cells. 2007;25(6):1384–92.

    Article  CAS  PubMed  Google Scholar 

  55. Barry F, Boynton RE, Liu B, Murphy JM. Chondrogenic differentiation of mesenchymal stem cells from bone marrow: differentiation-dependent gene expression of matrix components. Exp Cell Res. 2001;268(2):189–200.

    Article  CAS  PubMed  Google Scholar 

  56. Hernández-Bule M, Trillo M, Martínez-García M, Abilahoud C, Úbeda A. Chondrogenic differentiation of adipose-derived stem cells by radiofrequency electric stimulation. J Stem Cell Res Ther. 2017;7(407):2.

    Google Scholar 

  57. Abdi R, Fiorina P, Adra CN, Atkinson M, Sayegh MH. Immunomodulation by mesenchymal stem cells: a potential therapeutic strategy for type 1 diabetes. Diabetes. 2008;57(7):1759–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shi M, Liu ZW, Wang FS. Immunomodulatory properties and therapeutic application of mesenchymal stem cells. Clin Exp Immunol. 2011;164(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Song L, Webb NE, Song Y, Tuan RS. Identification and functional analysis of candidate genes regulating mesenchymal stem cell self-renewal and multipotency. Stem Cells. 2006;24(7):1707–18.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Arjmand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arjmand, B., Ranjbaran, N., Khatami, F., Hashemi, M. (2019). Different Gene Expression Profile of Mesenchymal Stem Cells from Various Sources. In: Arjmand, B. (eds) Genomics, Proteomics, and Metabolomics. Stem Cell Biology and Regenerative Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-27727-7_4

Download citation

Publish with us

Policies and ethics