Skip to main content

Metabolic Profiling of the Mesenchymal Stem Cells’ Secretome

  • Chapter
  • First Online:
Genomics, Proteomics, and Metabolomics

Abstract

Human ‘multipotent mesenchymal stromal cells’ (hMSCs) are popular cells in human regenerative medicine due to their ability to renew themselves and differentiate into various specialized cell types under specific physiological or experimental conditions. HMSCs secrete a broad spectrum of components including proteins and metabolites that represent significant effects on the cells in their neighborhood. Furthermore, it assists to characterize them. The therapeutic effects of hMSCs were thought to be due to their multipotent characterization and their ability to engraft and differentiate at the site of injury. However, recent studies have revealed the fact that a secretome plays important role in the therapeutic potential of hMSCs. Here, we outline the decoding of the metabolome for hMSCs secretome through metabolic profiling by application of MALDI-TOF-MS which could contribute to a better understanding of the therapeutic effects associated with hMSCs and their characterization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mendicino M, Bailey AM, Wonnacott K, Puri RK, Bauer SR. MSC-based product characterization for clinical trials: an FDA perspective. Cell Stem Cell. 2014;14(2):141–5.

    Article  CAS  PubMed  Google Scholar 

  2. Bianco P, Robey PG, Simmons PJ. Mesenchymal stem cells: revisiting history, concepts, and assays. Cell Stem Cell. 2008;2(4):313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause DS, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  PubMed  Google Scholar 

  4. Barry FP, Murphy JM. Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol. 2004;36(4):568–84.

    Article  CAS  PubMed  Google Scholar 

  5. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  6. Lai RC, Yeo RWY, Tan SS, Zhang B, Yin Y, Sze NSK, et al. Mesenchymal stem cell exosomes: the future msc-based therapy? In: Mesenchymal stem cell therapy. Totowa: Humana Press; 2013. p. 39–61.

    Chapter  Google Scholar 

  7. Giordano A, Galderisi U, Marino IR. From the laboratory bench to the patient’s bedside: an update on clinical trials with mesenchymal stem cells. J Cell Physiol. 2007;211(1):27–35.

    Article  CAS  PubMed  Google Scholar 

  8. Afanasyev BV, Elstner EE, Zander AR. A. J. Friedenstein, founder of the mesenchymal stem cell concept. Cell Ther Transplant. 2009;1(3):35–8.

    Google Scholar 

  9. Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation. 1974;17(4):331–40.

    Article  CAS  PubMed  Google Scholar 

  10. Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation. 1968;6(2):230–47. [cited 2018 Aug 5].

    Article  CAS  PubMed  Google Scholar 

  11. Ullah I, Subbarao RB, Rho GJ. Human mesenchymal stem cells - current trends and future prospective. Biosci Rep. 2015;35(2):e00191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): a comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9(1):12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Brunstein CG, Setubal DC, Wagner JE. Expanding the role of umbilical cord blood transplantation. Br J Haematol. 2007;137(1):20–35.

    Article  PubMed  Google Scholar 

  14. Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair-current views. Stem Cells. 2007;25(11):2896–902.

    Article  PubMed  Google Scholar 

  15. Vizoso F, Eiro N, Cid S, Schneider J, Perez-Fernandez R. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci. 2017;18(9):1852.

    Article  PubMed Central  CAS  Google Scholar 

  16. Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD. Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie. 2013;95(12):2235–45.

    Article  CAS  PubMed  Google Scholar 

  17. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem. 2006;98(5):1076–84.

    Article  CAS  PubMed  Google Scholar 

  18. McNamara LE, Sjöström T, Meek RMD, Oreffo ROC, Su B, Dalby MJ, et al. Metabolomics: a valuable tool for stem cell monitoring in regenerative medicine. J R Soc Interface. 2012;9(73):1713–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Minai-Tehrani A, Jafarzadeh N, Gilany K. Metabolomics: a state-of-the-art technology for better understanding of male infertility. Andrologia. 2016;48(6):609–16.

    Article  CAS  PubMed  Google Scholar 

  20. Fiehn O. Metabolomics — the link between genotypes and phenotypes. In: Functional genomics. Dordrecht: Springer; 2002. p. 155–71.

    Chapter  Google Scholar 

  21. Goodacre R. Metabolomics of a superorganism. J Nutr. 2007;137(1):259S–66S.

    Article  CAS  PubMed  Google Scholar 

  22. Griffin JL. The Cinderella story of metabolic profiling: does metabolomics get to go to the functional genomics ball? Philos Trans R Soc Lond Ser B Biol Sci. 2006;361(1465):147–61.

    Article  CAS  Google Scholar 

  23. Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R, et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res. 2018;46(D1):D608–17.

    Article  CAS  PubMed  Google Scholar 

  24. Dando I, Dalla Pozza E, Biondani G, Cordani M, Palmieri M, Donadelli M. The metabolic landscape of cancer stem cells. IUBMB Life. 2015;67(9):687–93.

    Article  CAS  PubMed  Google Scholar 

  25. Shyh-Chang N, Ng H-H. The metabolic programming of stem cells. Genes Dev. 2017;31(4):336–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Murgia A, Mancuso L, Manis C, Caboni P, Cao G. GC-MS metabolomics analysis of mesenchymal stem cells treated with copper oxide nanoparticles. Toxicol Mech Methods. 2016;26(8):611–9.

    Article  CAS  PubMed  Google Scholar 

  27. Mastrangelo A, Panadero MI, Pérez LM, Gálvez BG, García A, Barbas C, et al. New insight on obesity and adipose-derived stem cells using comprehensive metabolomics. Biochem J. 2016;473(14):2187–203.

    Article  CAS  PubMed  Google Scholar 

  28. Ivanova G, Pereira T, Caseiro AR, Georgieva P, Maurício AC. Metabolomic and proteomic analysis of the mesenchymal stem cells’ secretome. In: Metabolomics - fundamentals and applications. London: InTech; 2016.

    Google Scholar 

  29. West FD, Henderson WM, Yu P, Yang J-Y, Stice SL, Smith MA. Metabolomic response of human embryonic stem cell-derived germ-like cells after exposure to steroid hormones. Toxicol Sci. 2012;129(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  30. Kim J-S, Kim E-J, Kim H-J, Yang J-Y, Hwang G-S, Kim C-W. Proteomic and metabolomic analysis of H2O2-induced premature senescent human mesenchymal stem cells. Exp Gerontol. 2011;46(6):500–10.

    Article  CAS  PubMed  Google Scholar 

  31. Cezar GG, Quam JA, Smith AM, Rosa GJM, Piekarczyk MS, Brown JF, et al. Identification of small molecules from human embryonic stem cells using metabolomics. Stem Cells Dev. 2007;16(6):869–82.

    Article  CAS  PubMed  Google Scholar 

  32. Wang G, Cao K, Liu K, Xue Y, Roberts AI, Li F, et al. Kynurenic acid, an IDO metabolite, controls TSG-6-mediated immunosuppression of human mesenchymal stem cells. Cell Death Differ. 2018;25(7):1209–23.

    Article  CAS  PubMed  Google Scholar 

  33. Pan Z, Raftery D. Comparing and combining NMR spectroscopy and mass spectrometry in metabolomics. Anal Bioanal Chem. 2007;387(2):525–7.

    Article  CAS  PubMed  Google Scholar 

  34. Cui L, Lu H, Lee YH. Challenges and emergent solutions for LC-MS/MS based untargeted metabolomics in diseases. Mass Spectrom Rev. 2018;37(6):772–92.

    Article  CAS  PubMed  Google Scholar 

  35. Brion C, Miller S. Regulated and constitutive secretion. Differential effects of protein synthesis arrest on transport of glycosaminoglycan chains to the two secretory pathways. J Biol Chem. 1992;267(3):1477–83.

    CAS  PubMed  Google Scholar 

  36. Kilroy GE, Foster SJ, Wu X, Ruiz J, Sherwood S, Heifetz A, et al. Cytokine profile of human adipose-derived stem cells: expression of angiogenic, hematopoietic, and pro-inflammatory factors. J Cell Physiol. 2007;212(3):702–9.

    Article  CAS  PubMed  Google Scholar 

  37. Lee MJ, Kim J, Kim MY, Bae Y-S, Ryu SH, Lee TG, et al. Proteomic analysis of tumor necrosis factor-α-induced secretome of human adipose tissue-derived mesenchymal stem cells. J Proteome Res. 2010;9(4):1754–62.

    Article  CAS  PubMed  Google Scholar 

  38. Kupcova Skalnikova H. Proteomic techniques for characterisation of mesenchymal stem cell secretome. Biochimie. 2013;95(12):2196–211.

    Article  CAS  PubMed  Google Scholar 

  39. Camargo M, Intasqui P, Bruna de Lima C, Montani DA, Nichi M, Pilau EJ, et al. MALDI-TOF fingerprinting of seminal plasma lipids in the study of human male infertility. Lipids. 2014;49(9):943–56.

    Article  CAS  PubMed  Google Scholar 

  40. Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7.

    Article  CAS  PubMed  Google Scholar 

  41. Castiglione F, Ferro M, Mavroudakis E, Pellitteri R, Bossolasco P, Zaccheo D, et al. NMR metabolomics for stem cell type discrimination. Sci Rep. 2017;7(1):15808.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gilany K, Moazeni Pouracil RS, Reza Sadeghi M. Fourier transform infrared spectroscopy: a potential technique for noninvasive detection of spermatogenesis. Avicenna J Med Biotechnol. 2014;6(1):47–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gilany K, Jafarzadeh N, Mani-Varnosfaderani A, Minai-Tehrani A, Sadeghi MR, Darbandi M, et al. Metabolic fingerprinting of seminal plasma from non-obstructive azoospermia patients: positive versus negative sperm retrieval. J Reprod Infertil. 2018;19(2):109–14.

    PubMed  PubMed Central  Google Scholar 

  44. Jafarzadeh N, Mani-Varnosfaderani A, Minai-Tehrani A, Savadi-Shiraz E, Sadeghi MR, Gilany K. Metabolomics fingerprinting of seminal plasma from unexplained infertile men: a need for novel diagnostic biomarkers. Mol Reprod Dev. 2015;82:150.

    Article  CAS  PubMed  Google Scholar 

  45. Gilany K, Moazeni-Pourasil RS, Jafarzadeh N, Savadi-Shiraz E. Metabolomics fingerprinting of the human seminal plasma of asthenozoospermic patients. Mol Reprod Dev. 2014;81(1):84–6.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang J, Rector J, Lin JQ, Young JH, Sans M, Katta N, et al. Nondestructive tissue analysis for ex vivo and in vivo cancer diagnosis using a handheld mass spectrometry system. Sci Transl Med. 2017;9(406):eaan3968.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Johnson CH, Ivanisevic J, Benton HP, Siuzdak G. Bioinformatics: the next frontier of metabolomics. Anal Chem. 2015;87(1):147–56.

    Article  CAS  PubMed  Google Scholar 

  48. Guijas C, Montenegro-Burke JR, Domingo-Almenara X, Palermo A, Warth B, Hermann G, et al. METLIN: a technology platform for identifying knowns and unknowns. Anal Chem. 2018;90(5):3156–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Arjmand .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gilany, K., Masroor, M.J., Minai-Tehrani, A., Mani-Varnosfaderani, A., Arjmand, B. (2019). Metabolic Profiling of the Mesenchymal Stem Cells’ Secretome. In: Arjmand, B. (eds) Genomics, Proteomics, and Metabolomics. Stem Cell Biology and Regenerative Medicine. Humana, Cham. https://doi.org/10.1007/978-3-030-27727-7_3

Download citation

Publish with us

Policies and ethics