Skip to main content

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 362 Accesses

Abstract

Over the past years optical traps for ions have undergone a development from first conceptual realizations of single ion traps in proof-of-principle experiments to a point where they can be used as a novel platform featuring a number of unique properties including complete isolation from radiofrequency fields, nanoscale potentials, and state-selectivity. This chapter’s focus is on discussing how these advantageous features can be used, e.g. for novel experiments investigating the properties of higher dimensional Coulomb crystals in optical standing wave potentials or for sensing external fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Nath, M. Dalmonte, A.W. Glaetzle, P. Zoller, F. Schmidt-Kaler, R. Gerritsma, Hexagonal plaquette spin–spin interactions and quantum magnetism in a two-dimensional ion crystal. New J. Phys. 17(6), 065018 (2015). ISSN 1367-2630. http://dx.doi.org/10.1088/1367-2630/17/6/065018

    Article  ADS  Google Scholar 

  2. J.I. Cirac, P. Zoller, A scalable quantum computer with ions in an array of microtraps. Nature 404(6778), 579–581 (2000). http://dx.doi.org/10.1038/35007021

    Article  ADS  Google Scholar 

  3. M. Cetina, A.T. Grier, V. Vuletić, Micromotion-induced limit to atom-ion sympathetic cooling in Paul traps. Phys. Rev. Lett. 109, 253201 (2012). https://doi.org/10.1103/PhysRevLett.109.253201

    Article  ADS  Google Scholar 

  4. T. Feldker, P. Bachor, M. Stappel, D. Kolbe, R. Gerritsma, J. Walz, F. Schmidt-Kaler, Rydberg excitation of a single trapped ion. Phys. Rev. Lett. 115, 173001 (2015). https://doi.org/10.1103/PhysRevLett.115.173001

    Article  ADS  Google Scholar 

  5. G. Higgins, W. Li, F. Pokorny, C. Zhang, F. Kress, C. Maier, J. Haag, Q. Bodart, I. Lesanovsky, M. Hennrich, Single strontium Rydberg ion confined in a Paul trap. Phys. Rev. X 7, 021038 (2017). https://doi.org/10.1103/PhysRevX.7.021038

    Google Scholar 

  6. G. Higgins, F. Pokorny, C. Zhang, Q. Bodart, M. Hennrich, Coherent control of a single trapped Rydberg ion. Phys. Rev. Lett. 119, 220501 (2017). https://doi.org/10.1103/PhysRevLett.119.220501

    Article  ADS  Google Scholar 

  7. D.J. Wineland, Nobel lecture: superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85(3), 1103–1114 (2013). https://doi.org/10.1103/revmodphys.85.1103

    Article  ADS  Google Scholar 

  8. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003). https://doi.org/10.1103/RevModPhys.75.281

    Article  ADS  Google Scholar 

  9. C. Monroe, D.M. Meekhof, B.E. King, S.R. Jefferts, W.M. Itano, D.J. Wineland, P. Gould, Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. Phys. Rev. Lett. 75(22), 4011–4014 (1995). ISSN 1079-7114. https://doi.org/10.1103/PhysRevLett.75.4011. http://www.ncbi.nlm.nih.gov/pubmed/10059792

    Article  ADS  Google Scholar 

  10. R. Blatt, C.F. Roos, Quantum simulations with trapped ions. Nat. Phys. 8(4), 277–284 (2012). https://doi.org/10.1038/nphys2252

    Article  Google Scholar 

  11. A. Friedenauer, H. Schmitz, J.T. Glückert, D. Porras, T. Schaetz, Simulating a quantum magnet with trapped ions. Nat. Phys. 4(10), 757–761 (2008). ISSN 1745-2473. http://dx.doi.org/10.1038/nphys1032

    Article  Google Scholar 

  12. R. Blatt, D. Wineland, Entangled states of trapped atomic ions. Nature 453(7198), 1008–1015 (2008). ISSN 0028-0836. https://doi.org/10.1038/nature07125. http://www.ncbi.nlm.nih.gov/pubmed/18563151

    Article  ADS  Google Scholar 

  13. J.D. Baltrusch, C. Cormick, G. De Chiara, T. Calarco, G. Morigi, Quantum superpositions of crystalline structures. Phys. Rev. A 84, 063821 (2011). https://doi.org/10.1103/PhysRevA.84.063821

    Article  ADS  Google Scholar 

  14. J.D. Baltrusch, C. Cormick, G. Morigi, Quantum quenches of ion Coulomb crystals across structural instabilities. Phys. Rev. A 86, 032104 (2012). https://doi.org/10.1103/PhysRevA.86.032104

    Article  ADS  Google Scholar 

  15. E. Shimshoni, G. Morigi, S. Fishman, Quantum Zigzag transition in ion chains. Phys. Rev. Lett. 106, 10401 (2011). https://doi.org/10.1103/PhysRevLett.106.010401

    Article  ADS  Google Scholar 

  16. E. Shimshoni, G. Morigi, S. Fishman, Quantum structural phase transition in chains of interacting atoms. Phys. Rev. A 83, 032308 (2011). https://doi.org/10.1103/PhysRevA.83.032308

    Article  ADS  Google Scholar 

  17. M. Pretko, L. Radzihovsky, Fracton-elasticity duality. Phys. Rev. Lett. 120(19), 195301 (2018). ISSN 0031-9007. https://doi.org/10.1103/PhysRevLett.120.195301. https://link.aps.org/doi/10.1103/PhysRevLett.120.195301

  18. K.K. Mehta, C.D. Bruzewicz, R. McConnell, R.J. Ram, J.M. Sage, J. Chiaverini, Integrated optical addressing of an ion qubit. Nat. Nanotechnol. 11(12), 1066–1070 (2016). ISSN 1748-3387. https://doi.org/10.1038/nnano.2016.139. http://www.nature.com/articles/nnano.2016.139

    Article  ADS  Google Scholar 

  19. D. Kielpinski, C. Monroe, D.J. Wineland, Architecture for a large-scale ion-trap quantum computer. Nature 417(6890), 709–711 (2002). https://doi.org/10.1038/nature00784. http://dx.doi.org/10.1038/nature00784

    Article  ADS  Google Scholar 

  20. L. Karpa, A. Bylinskii, D. Gangloff, M. Cetina, V. Vuletić, Suppression of ion transport due to long-lived subwavelength localization by an optical lattice. Phys. Rev. Lett. 111, 163002 (2013). https://doi.org/10.1103/PhysRevLett.111.163002

    Article  ADS  Google Scholar 

  21. A. Bylinskii, D. Gangloff, V. Vuletic, Tuning friction atom-by-atom in an ion-crystal simulator. Science 348(6239), 1115–1118 (2015). https://doi.org/10.1126/science.1261422

    Article  ADS  Google Scholar 

  22. D. Gangloff, A. Bylinskii, I. Counts, W. Jhe, V. Vuletic, Velocity tuning of friction with two trapped atoms. Nat. Phys. 11(11), 915–919 (2015). ISSN 1745-2473. http://dx.doi.org/10.1038/nphys3459

    Article  Google Scholar 

  23. J. Schmidt, A. Lambrecht, P. Weckesser, M. Debatin, L. Karpa, T. Schaetz, Optical trapping of ion coulomb crystals. Phys. Rev. X 8(2), 021028 (2018). ISSN 2160-3308. https://doi.org/10.1103/PhysRevX.8.021028. http://arxiv.org/abs/1712.08385

  24. M. Enderlein, T. Huber, C. Schneider, T. Schaetz, Single ions trapped in a one-dimensional optical lattice. Phys. Rev. Lett. 109, 233004 (2012). https://doi.org/10.1103/PhysRevLett.109.233004

    Article  ADS  Google Scholar 

  25. M. Tomza, K. Jachymski, R. Gerritsma, A. Negretti, T. Calarco, Z. Idziaszek, P.S. Julienne, Cold hybrid ion-atom systems, Rev. Mod. Phys. 91, 035001 (2019)

    Article  ADS  Google Scholar 

  26. D. Barredo, V. Lienhard, S. de Léséleuc, T. Lahaye, A. Browaeys, Synthetic three-dimensional atomic structures assembled atom by atom. Nature 561(7721), 79–82 (2018). ISSN 0028-0836. https://doi.org/10.1038/s41586-018-0450-2. http://www.nature.com/articles/s41586-018-0450-2

    Article  ADS  Google Scholar 

  27. T. Huber, A. Lambrecht, J. Schmidt, L. Karpa, T. Schaetz, A far-off-resonance optical trap for a Ba+ ion. Nat. Commun. 5, 5587 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karpa, L. (2019). Summary and Outlook. In: Trapping Single Ions and Coulomb Crystals with Light Fields. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-27716-1_5

Download citation

Publish with us

Policies and ethics