Skip to main content

Trapping Ions with Light Fields

  • Chapter
  • First Online:
Trapping Single Ions and Coulomb Crystals with Light Fields

Part of the book series: SpringerBriefs in Physics ((SpringerBriefs in Physics))

  • 383 Accesses

Abstract

In principle, the optical forces experienced by ions are of the same origin as for the case of neutral atoms. This is due to the fact that the light shift responsible for the optical potential stems from the coupling of the light field to the outer electron of the atoms and not to the electric charge. Thus, in a field-free environment, the effective potentials generated by an optical field for an ion and a neutral atom of the same polarizability and energy level structure would be identical. So in order to obtain a trapping potential for an ion, we would only have to replace the potential generated by an external electric quadrupole field modulated at radiofrequency with suitable optical fields, e.g. a red-detuned Gaussian beam focused on the ion. In the following, we will discuss the complications arising from the interaction of ions with ambient electric fields, the consequential prerequisites, and experimental techniques for carrying out optical ion trapping experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75, 281–324 (2003). https://doi.org/10.1103/RevModPhys.75.281

    Article  ADS  Google Scholar 

  2. J.C. Maxwell, A Treatise on Electricity and Magnetism, vol. 1 (Oxford, Clarendon Press, 1873)

    MATH  Google Scholar 

  3. Ch. Schneider, M. Enderlein, T. Huber, T. Schaetz, Optical trapping of an ion. Nat. Photonics 4(11), 772–775 (2010). ISSN 1749-4885. http://dx.doi.org/10.1038/nphoton.2010.236

    Article  ADS  Google Scholar 

  4. R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Optical dipole traps for neutral atoms. Adv. At. Mol. Opt. Phys. 42, 95–170 (2000)

    Article  ADS  Google Scholar 

  5. J. Schmidt, A. Lambrecht, P. Weckesser, M. Debatin, L. Karpa, T. Schaetz, Optical trapping of ion coulomb crystals. Phys. Rev. X 8(2), 021028 (2018). ISSN 2160-3308. https://doi.org/10.1103/PhysRevX.8.021028. http://arxiv.org/abs/1712.08385

  6. M. Enderlein, T. Huber, C. Schneider, T. Schaetz, Single ions trapped in a one-dimensional optical lattice. Phys. Rev. Lett. 109, 233004 (2012). https://doi.org/10.1103/PhysRevLett.109.233004

    Article  ADS  Google Scholar 

  7. M. Cetina, A.T. Grier, V. Vuletić, Micromotion-induced limit to atom-ion sympathetic cooling in Paul traps. Phys. Rev. Lett. 109, 253201 (2012). https://doi.org/10.1103/PhysRevLett.109.253201

    Article  ADS  Google Scholar 

  8. L. Karpa, A. Bylinskii, D. Gangloff, M. Cetina, V. Vuletić, Suppression of ion transport due to long-lived subwavelength localization by an optical lattice. Phys. Rev. Lett. 111, 163002 (2013). https://doi.org/10.1103/PhysRevLett.111.163002

    Article  ADS  Google Scholar 

  9. A. Bylinskii, D. Gangloff, V. Vuletic, Tuning friction atom-by-atom in an ion-crystal simulator. Science 348(6239), 1115–1118 (2015). https://doi.org/10.1126/science.1261422

    Article  ADS  Google Scholar 

  10. D. Gangloff, A. Bylinskii, I. Counts, W. Jhe, V. Vuletic, Velocity tuning of friction with two trapped atoms. Nat. Phys. 11(11), 915–919 (2015). ISSN 1745-2473. http://dx.doi.org/10.1038/nphys3459

    Article  Google Scholar 

  11. D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, Minimization of ion micromotion in a Paul trap. J. Appl. Phys. 83, 10 (1998)

    Article  Google Scholar 

  12. T. Huber, A. Lambrecht, J. Schmidt, L. Karpa, T. Schaetz, A far-off-resonance optical trap for a Ba+ ion. Nat. Commun. 5, 5587 (2014)

    Article  ADS  Google Scholar 

  13. L. Deslauriers, S. Olmschenk, D. Stick, W.K. Hensinger, J. Sterk, C. Monroe, Scaling and suppression of anomalous heating in ion traps. Phys. Rev. Lett. 97, 103007 (2006). https://doi.org/10.1103/PhysRevLett.97.103007

    Article  ADS  Google Scholar 

  14. Q.A. Turchette, D. Kielpinski, B.E. King, D. Leibfried, D.M. Meekhof, C.J. Myatt, M.A. Rowe, C.A. Sackett, C.S. Wood, W.M. Itano, C. Monroe, D.J. Wineland, Heating of trapped ions from the quantum ground state. Phys. Rev. A 61(6), 063418 (2000). ISSN 1050-2947. https://doi.org/10.1103/PhysRevA.61.063418

  15. D.A. Hite, Y. Colombe, A.C. Wilson, K.R. Brown, U. Warring, R. Jördens, J.D. Jost, K.S. McKay, D.P. Pappas, D. Leibfried, D.J. Wineland, 100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. Phys. Rev. Lett. 109(10), 103001 (2012). ISSN 0031-9007. https://doi.org/10.1103/PhysRevLett.109.103001

  16. C. Tuchendler, A.M. Lance, A. Browaeys, Y.R.P. Sortais, P. Grangier, Energy distribution and cooling of a single atom in an optical tweezer. Phys. Rev. A 78, 033425 (2008)

    Article  ADS  Google Scholar 

  17. C. Schneider, M. Enderlein, T. Huber, S. Dürr, T. Schaetz, Influence of static electric fields on an optical ion trap. Phys. Rev. A 85, 013422 (2012). https://doi.org/10.1103/PhysRevA.85.013422

    Article  ADS  Google Scholar 

  18. R. Alheit, C. Hennig, R. Morgenstern, F. Vedel, G. Werth, Observation of instabilities in a Paul trap with higher-order anharmonicities. Appl. Phys. B 61(3), 277–283 (1995). ISSN 0946-2171. https://doi.org/10.1007/BF01082047

    Article  ADS  Google Scholar 

  19. E.B. Wilson, Probable Inference, the Law of Succession, and Statistical Inference. J. Am. Stat. Assoc. 22(158), 209–212 (1927). https://doi.org/10.1080/01621459.1927.10502953

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Karpa, L. (2019). Trapping Ions with Light Fields. In: Trapping Single Ions and Coulomb Crystals with Light Fields. SpringerBriefs in Physics. Springer, Cham. https://doi.org/10.1007/978-3-030-27716-1_2

Download citation

Publish with us

Policies and ethics