Skip to main content

Carbon Storage and Utilization as a Local Response to Use Fossil Fuels in a Sustainable Manner

  • Chapter
  • First Online:
Sustaining Resources for Tomorrow

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The reduction of CO2 emissions requires the combination of measures that prevent the emission of this compound in the electrical and industrial sector. Each region will have different characteristics that should be accentuated to apply the most viable technologies. In this case, a study is carried out in the North of Spain, where a potential CO2 store is located and, in this work, the development of a cluster CCS is studied, which is defined as the region with minimum CO2 emissions. In this case, the connection of different industrial nodes with the storage is studied, and a cluster CCS definition methodology is proposed. Those nodes that are economically and/or environmentally unviable in connection with the geological storage may apply other technologies for direct or indirect use of CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: review of CO2 capture and reuse technologies. J Supercrit Fluids 132:3–16

    Article  Google Scholar 

  2. IPCC (2005) In: Metz B, Davidson O, de Coninck H, Loos M, Meyer L (eds) Carbon dioxide capture and storage. Cambridge University Press, United Kingdom, pp 431

    Google Scholar 

  3. European Parliament: Directive 2003/87/CE establishing a scheme for greenhouse gas emission allowance trading within the Community and amending Council Directive 96/61/EC. Brussels, 2003

    Google Scholar 

  4. Llamas B, Hernández A, Mazadiego LF (2016a) Economic modeling of the CO2 transportation phase and its application to the Duero Basin, Spain. Greenhouse Gas Sci Technol 00:1–14. https://doi.org/10.1002/ghg

  5. Rubin ES, Davison JE, Herzog HJ (2015) The cost of CO2 capture and storage. Int J Greenhouse Control 40:378–400

    Article  Google Scholar 

  6. Kanniche M, Gros-Bonnivard R, Jaud P et al (2010) Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture. Appl Therm Eng 30:53–62. https://doi.org/10.1016/J.APPLTHERMALENG.2009.05.005

    Article  Google Scholar 

  7. Scholes CA, Smith KH, Kentish SE, Stevens GW (2010) CO2 capture from pre-combustion processes—strategies for membrane gas separation. Int J Greenhouse Gas Control 4:739–755. https://doi.org/10.1016/J.IJGGC.2010.04.001

    Article  Google Scholar 

  8. Hu Y, Yan J (2012) Characterization of flue gas in oxy-coal combustion processes for CO2 capture. Appl Energy 90:113–121. https://doi.org/10.1016/j.apenergy.2011.03.005

    Article  Google Scholar 

  9. Kohl AL, Nielsen R (1997) Alkanolamines for hydrogen sulfide and carbon dioxide removal in gas purification, 5th edn. Gulf Publishing Company, Houston, pp 40–186

    Chapter  Google Scholar 

  10. Llamas B, Navarrete B, Vega F, Rodríguez E, Mazadiego LF, Cámara Á, Otero P (2016b) Greenhouse gas emissions – carbon capture, storage and utilisation. Intechopen, Croatia, pp 81–114

    Google Scholar 

  11. Onyebuchi VE, Kolios A, Hanak DP, Biliyok C, Manovic V (2018) A systematic review of key challenges of CO2 transport via pipelines. Renew Sustain Energy Rev 81:2563–2583

    Article  Google Scholar 

  12. Jensen MD, Schlasner SM, Sorensen JA, Hamling JA (2014) Operational flexibility of CO2 transport and storage. Energy Procedia 63:2715–2722

    Article  Google Scholar 

  13. Johnson JW, Nitao JJ, Knauss KG (2004) Reactive transport modelling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning. Geol Soc Lond Spec Publ 233(1):107–128

    Article  Google Scholar 

  14. Benson SM (2005) In: Thomas DC, Benson SM (eds) Overview of geologic storage of CO2 in carbon dioxide capture for storage in deep geologic formations, vol 2. Elsevier

    Google Scholar 

  15. Bocin-Dumitriu A, Perez M, Sveen T, Bocin-Dumitriu A (2013) Carbon capture and utilisation workshop: background and proceedings

    Google Scholar 

  16. Carbon Sequestration Leadership Forum: TECHNICAL GROUP Phase I Final Report by the CSLF Task Force on CO2 Utilization Options Background, 2012

    Google Scholar 

  17. Cuéllar-Franca RM, Azapagic A (2015) Carbon capture, storage and utilisation technologies: a critical analysis and comparison of their life cycle environmental impacts. J CO2 Util 9:82–102. https://doi.org/10.1016/j.jcou.2014.12.001

    Article  Google Scholar 

  18. European Parliament: Directive 2009/31/EC on the geological storage of carbon dioxide and amending Council Directive 85/337/EEC, European Parliament and Council Directives 2000/60/EC, 2001/80/EC, 2004/35/EC, 2006/12/EC, 2008/1/EC and Regulation (EC) No 1013/2006. Brussels, 2009

    Google Scholar 

  19. Llamas B, Cienfuegos P (2012) Multicriteria decision methodology to select suitable areas for storing CO2. Energy Environ 23:2–3

    Article  Google Scholar 

  20. Instituto Geológico y Minero de España. http://info.igme.es/geologiasubsuelo/AlmacenamientoCO2/Algeco2.aspx. Access on 20th Apr 2019

  21. Llamas B, Camara A (2014) Application of multicriteria algorithm to select suitable areas for storing CO2: CO2SiteAssess software. Energy Procedia 63:4977–4986

    Article  Google Scholar 

  22. European Parliament: Directive 2018/410 amending Directive 2003/87/EC to enhance cost-effective emission reductions and low-carbon investments, and Decision (EU) 2015/1814. Brussels, 2018

    Google Scholar 

  23. Environment Agency Scoping guidelines on the Environmental Impact Assessment (EIA) of projects: scoping the environmental impacts of windfarms (on-shore and off-shore)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo Llamas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Llamas, B., Ortega, M.F., García, M.J., Mora, P. (2020). Carbon Storage and Utilization as a Local Response to Use Fossil Fuels in a Sustainable Manner. In: Stagner, J., Ting, DK. (eds) Sustaining Resources for Tomorrow. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-27676-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27676-8_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27675-1

  • Online ISBN: 978-3-030-27676-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics