Skip to main content

Supercapacitor for Future Energy Storage

  • Chapter
  • First Online:
Sustaining Resources for Tomorrow

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The research and application of renewable energy sources and electromobility implies a subordinate but not negligible problem, the energy storage. The most important sources of clean energy, related to solar and wind power plants, are in fact intermittent and therefore require their management in energy collection, even more in the long term. Additionally, electromobility and several other applications may need huge peak power. All this kind of problems cannot be solved always by electrochemical batteries. An alternative to them is represented by supercapacitors (SCs), energy storage devices specialized in high power, exhibiting also a very long life cycle. In this chapter, we will illustrate the state of the art of their operation, typologies, applications and all that a wide-ranging interdisciplinary literature offers us about how this type of technology could be used more and more in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Halper MS, Ellenbogen JC (2006) Supercapacitors: a brief overview. MITRE, p 5

    Google Scholar 

  2. Maxwell Technologies (2015) https://www.maxwell.com/images/documents/K2_2_85V_DS_3000619EN_3_pdf

  3. Ali F, Liu X, Zhou D, Yang X, Xu J, Schenk T et al (2017) Silicon-doped hafnium oxide anti-ferroelectric thin films for energy storage. J Appl Phys 122:144105

    Article  Google Scholar 

  4. Waseem R et al (2018) Recent advancements in supercapacitor technology. Nano Energy 52:441–473. https://doi.org/10.1016/j.nanoen.2018.08.013

    Article  Google Scholar 

  5. Lin R (2012) Formulation of electrolytes based on ionic liquids for supercapacitors applications. Ph.D. thesis, University of Toulose

    Google Scholar 

  6. Lazzari M (2010) Electrode materials for ionic liquid based-supercapacitors. Ph.D. thesis, University of Bologna

    Google Scholar 

  7. https://www.nanoramic.com/extreme-environment-ultracapacitors

  8. Kotz R, Carlen M (1999) Principles and applications of electrochemical capacitors. Electrochim Acta 45:2483–2498

    Article  Google Scholar 

  9. https://www.escomponents.com/ultracapacitors-101

  10. https://commons.wikimedia.org/wiki/File:Electric_double-layer_capacitor_(Activated_carbon_electrode_-_BOX_type).PNG

  11. Long JW et al (2011) Asymmetric electrochemical capacitors—stretching the limits of aqueous electrolytes. MRS Bull 36:513

    Article  Google Scholar 

  12. Naoi K, Simon P (2008) New materials and new configurations for advanced electrochemical capacitors. Electrochem Soc Interface 34–37

    Google Scholar 

  13. Mastragostino M, Arbizzani C, Soavi F (2002) Conducting polymers as electrode materials in supercapacitors. Solid State Ionics 148:493–498

    Article  Google Scholar 

  14. Hou Y et al (2010) Design and Synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733

    Article  Google Scholar 

  15. https://www.transparencymarketresearch.com/pressrelease/supercapacitor-market.htm

  16. Harrop P, Zhitomirsky V (2013) Electrochemical double layer capacitors: supercapacitors 2013–2023. IDTechEx. http://www.idtechex.com/research/reports/electrochemical-double-layer-capacitors-supercapacitors-2013-2023-000318.asp

  17. Hunt L (2013) Supercapacitors: likely successors to li-ion batteries? Design products and applications. http://www.dpaonthenet.net/article/56394/Supercapacitors–likely-successors-to-li-ion-batteries-.aspx

  18. https://www.spscap.com/smart-grid

  19. Harrop P (2012) Why ultracapacitors maintain 30% market growth. Electric vehicles research. http://www.electricvehiclesresearch.com/articles/why-ultracapacitors-maintain-30-market-growth-00004825.asp?sessionid=1

  20. Harrop P (2013) Change of leadership of the global market value of supercapacitors? IDTechEx. http://www.idtechex.com/research/articles/change-of-leadership-of-the-global-market-value-of-supercapacitors-00005344.asp

  21. Ippolito M (2008) International Patent WO2008020463A2, 21 Feb 2008

    Google Scholar 

  22. http://www.sequoiaonline.com/kbus/Volantino_K-BUS_IT.pdf

  23. Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107

    Article  Google Scholar 

  24. Kierzek K et al (2004) Electrochemical capacitors based on highly porous carbons prepared by KOH activation. Electrochim Acta 49:515–523

    Article  Google Scholar 

  25. Raymundo-Piñero E, Leroux F, Béguin F (2006) A high-performance carbon for supercapacitors obtained by carbonization of a seaweed biopolymer. Adv Mater 18:1877–1882

    Article  Google Scholar 

  26. Xiong C, Li T, Zhao T, Dang A, Li H, Ji X et al (2017) Reduced graphene oxide carbon nanotube grown on carbon fiber as binder-free electrode for flexible high performance fiber supercapacitors. Compos Part B Eng 116:7–15

    Article  Google Scholar 

  27. Vivekchand SRC et al (2008) Graphene-based electrochemical supercapacitors. J Chem Sci 120:9

    Article  Google Scholar 

  28. Stoller MD et al (2008) Graphene-based ultracapacitors. Nano Lett 8:3498–3502

    Article  Google Scholar 

  29. Wang Y et al (2009) Supercapacitor devices based on graphene materials. J Phys Chem C 113:13103–13107

    Article  Google Scholar 

  30. Yu G et al (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    Article  Google Scholar 

  31. Sarno M, Ponticorvo E, Cirillo C (2016) High surface area monodispersed Fe3O4 nanoparticles alone and on physical exfoliated graphite for improved supercapacitors. J Phys Chem Solids 99:138–147

    Article  Google Scholar 

  32. Kaur J et al (2017) Electrostatically driven scalable synthesis of MoS2–graphene hybrid films assisted by hydrophobins. RSC Adv 7:50166

    Article  Google Scholar 

  33. Tian W et al (2016) Renewable graphene-like nitrogen-doped carbon nanosheets as supercapacitor electrodes with integrated high energy–power properties. J Mater Chem A 4:8690

    Article  Google Scholar 

  34. Liu C et al (2010) Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett 10:4863–4868

    Article  Google Scholar 

  35. Nomura K et al (2019) 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy Environ Sci. Advance Article

    Google Scholar 

  36. Frackowiak E et al (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sources 153:413–418

    Article  Google Scholar 

  37. Lota K, Khomenko V, Frackowiak E (2004) Capacitance properties of poly (3,4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solids 65:295–301

    Article  Google Scholar 

  38. Girija T, Sangaranarayanan M (2006) Polyaniline-based nickel electrodes for electrochemical supercapacitors—influence of Triton X-100. J Power Sources 159:1519–1526

    Article  Google Scholar 

  39. Kim J-Y, Kim KH, Kim KB (2008) Fabrication and electrochemical properties of carbon nanotube/polypyrrole composite film electrodes with controlled pore size. J Power Sources 176:396–402

    Article  Google Scholar 

  40. Zhang H et al (2009) Influence of microstructure on the capacitive performance of polyaniline/carbon nanotube array composite electrodes. Electrochim Acta 54:1153–1159

    Article  Google Scholar 

  41. Zhang H et al (2008) Tube-covering-tube nanostructured polyaniline/carbon nanotube array composite electrode with high capacitance and superior rate performance as well as good cycling stability. Electrochem Commun 10:1056–1059

    Article  Google Scholar 

  42. Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    Article  Google Scholar 

  43. Simotwo SK, DelRe C, Kalra V (2016) Supercapacitor electrodes based on high-purity electrospun polyaniline and polyaniline–carbon nanotube nanofibers. ACS Appl Mater Interfaces 8:21261–21269

    Article  Google Scholar 

  44. Li X et al (2014) Microwave-assisted chemical-vapor-induced in situ polymerization of polyaniline nanofibers on graphite electrode for high performance supercapacitor. ACS Appl Mater Interfaces 6:19978–19989

    Article  Google Scholar 

  45. Asen P, Shahrokhian S (2017) A high performance supercapacitor based on graphene/polypyrrole/Cu2O–Cu(OH)2 ternary nanocomposite coated on nickel foam. J Phys Chem C 121:6508–6519

    Article  Google Scholar 

  46. Wang Y et al (2015) Mesoporous transition metal oxides for supercapacitors. Nanomaterials 5:1667–1689

    Article  Google Scholar 

  47. Zhi M et al (2013) Nanostructured carbon–metal oxide composite electrodes for supercapacitors: a review. Nanoscale 5:72–88

    Article  Google Scholar 

  48. Qu Q et al (2009) Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J Phys Chem C 113:14020–14027

    Article  Google Scholar 

  49. Qu QT et al (2009) A new cheap asymmetric aqueous supercapacitor: activated carbon//NaMnO2. J Power Sources 194:1222–1225

    Article  Google Scholar 

  50. Erik Brandon MS (2010) William West, NASA Tech. Briefs 34, 21

    Google Scholar 

  51. Balducci A et al (2007) High temperature carbon-carbon-supercapacitor using ionic liquid as electrolyte. J Power Sources 165:922–927

    Article  Google Scholar 

  52. Zarrougui R et al (2018) 1-Allyl-3 methylimidazoliumbased ionic liquids employed as suitable electrolytes for high energy density supercapacitors based on graphene nanosheets electrodes. J Mol Liq 249:795–804

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Abbate .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abbate, G., Saraceno, E., Damasco, A. (2020). Supercapacitor for Future Energy Storage. In: Stagner, J., Ting, DK. (eds) Sustaining Resources for Tomorrow. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-27676-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27676-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27675-1

  • Online ISBN: 978-3-030-27676-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics