Skip to main content

Adaptive Mesh Refinement with an Automatic Hybrid RANS/LES Strategy and Overset Grids

  • Conference paper
  • First Online:
Book cover Progress in Hybrid RANS-LES Modelling

Abstract

A simulation strategy combining an octree-AMR and an HRL turbulence model with overset grids is investigated in FLUSEPA™, the Finite-Volume solver developed by ArianeGroup. The turbulence model used is a \(k- \varepsilon \) with a Delayed Detached Eddy Simulation [14] treatment for the destruction term of k. First, we study the influence of the refinement criteria on the pressure fluctuations in the recirculation area of a cylindrical backward facing step. Using an initially coarse grid, we compare the results with those from a fixed fine grid calculation. Then, the methodology is applied to the numerical simulation of the buffeting of an Ariane 5 model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Adaptive Mesh Refinement.

  2. 2.

    Registered trademark in France with number 134009261.

  3. 3.

    Hybrid RANS/LES.

References

  1. Berger, M.: Adaptive mesh refinement for hyperbolic partial differential equations. Ph.D. thesis, Stanford University, CA (1982)

    Google Scholar 

  2. Brenner, P.: Three dimensional aerodynamics with moving bodies applied to solid propellant. In: 27th Joint Propulsion Conference—AIAA, 2304 (1991)

    Google Scholar 

  3. Brenner, P.: Unsteady flows about bodies in relative motion. In: First AFOSR Conference on Dynamic Motion CFD (1996)

    Google Scholar 

  4. Chauvet, N., Deck, S., Jacquin, L.: Zonal detached eddy simulation of a controlled propulsive jet. AIAA J. 45(10), 2458–2473 (2007)

    Article  Google Scholar 

  5. Deck, S.: Recent improvements in the zonal detached eddy simulation (ZDES) formulation. Theoretical and Computational Fluid Dynamics, pp. 1–28 (2012)

    Google Scholar 

  6. Deprés, D., Reijasse, P., Dussauge, J.P.: Analysis of unsteadiness in afterbody transonic flows. AIAA J. 42(12), 2541–2550 (2004)

    Article  Google Scholar 

  7. Kleb, W.L., Batina, J.T., Williams, M.H.: Temporal adaptive Euler/Navier-Stokes algorithm involving unstructured dynamic meshes. AIAA J. 30(8), 1980–1985 (1992)

    Article  Google Scholar 

  8. Limare, A., Brenner, P., Borouchaki, H.: An adaptive remeshing strategy for unsteady aerodynamics applications. In: 46th AIAA Fluid Dynamics Conference, p. 3180 (2016)

    Google Scholar 

  9. Menter, F.R., Egorov, Y.: The scale-adaptive simulation method for unsteady turbulent flow predictions. part 1 : Theory and model description. Flow Turbul. Combust. 138:85–113 (2010)

    Google Scholar 

  10. Meliga, P., Reijasse, P.: Unsteady transonic flow behind an axisymmetric afterbody equipped with two boosters. In: 25th AIAA Applied Aerodynamics Conference, p. 4564 (2007)

    Google Scholar 

  11. Park, M.A., Loseille, A., Krakos, J., Michal, T.R., Alonso, J.J.: Unstructured grid adaptation: status, potential impacts, and recommended investments towards CFD 2030. In: 46th AIAA Fluid Dynamics Conference, p. 3323 (2016)

    Google Scholar 

  12. Pont, G.: Self-adaptive turbulence models for unsteady compressible flows. Ph.D. thesis, DynFluid, Arts et Metiers ParisTech (2015)

    Google Scholar 

  13. Pont, G., Puech, D., Brenner, P.: Hybrid RANS/LES simulation of a space launcher using a high order finite volume scheme and grid intersections technique. pp. 305–317 (2015)

    Google Scholar 

  14. Spalart, P.R., Deck, S., Shur, M.L., Squires, K.D., Strelets, M.K., Travin, A.: A new version of detached-eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20, 181–195 (2006)

    Article  Google Scholar 

  15. Weiss, P.-E.: Simulation numérique et analyse physique d’un écoulement d’arrière-corps axisymétrique et application au contrôle des charges latérales. Ph.D. thesis, Paris 6 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Limare .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Limare, A., Borouchaki, H., Brenner, P. (2020). Adaptive Mesh Refinement with an Automatic Hybrid RANS/LES Strategy and Overset Grids. In: Hoarau, Y., Peng, SH., Schwamborn, D., Revell, A., Mockett, C. (eds) Progress in Hybrid RANS-LES Modelling . Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 143. Springer, Cham. https://doi.org/10.1007/978-3-030-27607-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27607-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27606-5

  • Online ISBN: 978-3-030-27607-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics