Skip to main content

Automatic Memory-Efficient Scheduling of CNNs

  • Conference paper
  • First Online:
Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11733))

Included in the following conference series:

  • 1527 Accesses

Abstract

Accessing large external DRAM is costly, and poses a challenge to efficiently evaluate data-intensive convolutional neural networks (CNNs) on embedded devices. These external memory accesses can be minimized by exploiting data reuse in on-chip memory. Selecting the combination of code transformations that minimize the external DRAM accesses is however an extremely complex task. In this work a mathematical model is presented to quickly and very precisely evaluate combinations of code transformations on CNNs. An accompanying open source tool is developed which leverages this model to perform automated design space exploration and code generation for CNNs. The correctness of the developed model is demonstrated by measurement of seven neural networks. Results show the transformations selected by the tool can reduce external memory accesses by over an order of magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016). http://www.deeplearningbook.org

    MATH  Google Scholar 

  2. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. CoRR abs/1512.03385 (2015)

    Google Scholar 

  3. Horowitz, M.: Computing’s energy problem (and what we can do about it). In: 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 10–14, February 2014

    Google Scholar 

  4. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)

  5. Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep convolutional networks. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR Oral), June 2016

    Google Scholar 

  6. Low, T.M., Igual, F.D., Smith, T.M., Quintana-Orti, E.S.: Analytical modeling is enough for high-performance BLIS. ACM Trans. Math. Softw. 43(2), 12:1–12:18 (2016)

    Article  MathSciNet  Google Scholar 

  7. Motamedi, M., Gysel, P., Ghiasi, S.: Placid: a platform for FPGA-based accelerator creation for DCNNs. ACM Trans. Multimedia Comput. Commun. Appl. 13(4), 62:1–62:21 (2017)

    Article  Google Scholar 

  8. Pareto, V.: Manual of Political Economy. Scholars Book Shelf, Cranbury (1971). https://books.google.nl/books?id=qAC8AAAAIAAJ

    Google Scholar 

  9. Paszke, A., et al.: Automatic differentiation in pytorch (2017)

    Google Scholar 

  10. Peemen, M.: Improving the efficiency of deep convolutional networks. Eindhoven University of Technology (2017). https://pure.tue.nl/ws/portalfiles/portal/77700147/20171012_Peemen.pdf

  11. Pradelle, B., Meister, B., Baskaran, M., Springer, J., Lethin, R.: Polyhedral optimization of tensorflow computation graphs. In: 6th Workshop on Extreme-Scale Programming Tools (ESPT, Associated with SC 2017) (2017)

    Google Scholar 

  12. Ragan-Kelley, J.: Decoupling algorithms from the organization of computation for high performance image processing. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, June 2014. http://groups.csail.mit.edu/commit/papers/2014/jrkthesis.pdf

  13. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  14. Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., Chen, L.: Inverted residuals and linear bottlenecks: mobile networks for classification, detection and segmentation. CoRR (2018)

    Google Scholar 

  15. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. CoRR abs/1409.1556 (2014)

    Google Scholar 

  16. Sze, V., Chen, Y., Yang, T., Emer, J.S.: Efficient processing of deep neural networks: a tutorial and survey. Proc. IEEE 105(12), 2295–2329 (2017)

    Article  Google Scholar 

  17. Waeijen, L.: https://github.com/lwaeijen/cnn-demo

  18. Waeijen, L.: https://github.com/lwaeijen/cnn-mapping-tool

  19. Wolf, M.E., Lam, M.S.: A loop transformation theory and an algorithm to maximize parallelism. IEEE Trans. Parallel Distrib. Syst. 2, 452–471 (1991)

    Article  Google Scholar 

  20. Yang, X., et al.: DNN dataflow choice is overrated. CoRR abs/1809.04070 (2018). http://arxiv.org/abs/1809.04070

Download references

Acknowledgements

This work is supported by NWO project CPS-P3 (12695).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luc Waeijen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Waeijen, L., Sioutas, S., He, Y., Peemen, M., Corporaal, H. (2019). Automatic Memory-Efficient Scheduling of CNNs. In: Pnevmatikatos, D., Pelcat, M., Jung, M. (eds) Embedded Computer Systems: Architectures, Modeling, and Simulation. SAMOS 2019. Lecture Notes in Computer Science(), vol 11733. Springer, Cham. https://doi.org/10.1007/978-3-030-27562-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27562-4_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27561-7

  • Online ISBN: 978-3-030-27562-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics