Skip to main content

Polynomial Chaos Approach to Describe the Propagation of Uncertainties Through Gas Networks

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2018

Part of the book series: Mathematics in Industry ((TECMI,volume 30))

  • 792 Accesses

Abstract

The ability of gas-fired power plants to ramp quickly is used to balance fluctuations in the power grid caused by renewable energy sources, which in turn leads to time-varying gas consumption and fluctuations in the gas network. Since gas system operators assume nearly constant gas consumption, there is a need to assess the risk of these stochastic fluctuations, which occur on shorter time scales than the planning horizon. We present a mathematical formulation for these stochastic fluctuations as a generalization of isothermal Euler equations. Furthermore, we discuss control policies to damp fluctuations in the network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abgrall, R., Congedo, P.M., Geraci, G., Iaccarino, G.: An adaptive multiresolution semi-intrusive scheme for UQ in compressible fluid problems. Int. J. Numer. Methods Fluids 78, 595–637 (2015)

    Article  MathSciNet  Google Scholar 

  2. Banda, M.K., Herty, M., Klar, A.: Coupling conditions for gas networks governed by the isothermal Euler equations. Netw. Heterogen. Media 1, 295–314 (2006)

    Article  MathSciNet  Google Scholar 

  3. Brouwer, J., Gasser, I., Herty, M.: Gas pipeline models revisited: Model hierarchies, nonisothermal models, and simulations of networks. Multiscale Model. Simul. 9, 601–623 (2011)

    Article  MathSciNet  Google Scholar 

  4. Cameron, R.H., Martin, W.T.: The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals. Ann. Math. 48(2), 385–392 (1947)

    Article  MathSciNet  Google Scholar 

  5. Chertkov, M., Korotkevich, A.: Adiabatic approach for natural gas pipeline computations. In: IEEE 56th Annual Conference on Decision and Control, pp. 5634–5639. IEEE, Piscataway (2017)

    Google Scholar 

  6. Chertkov, M., Backhaus, S., Lebedev, V.: Cascading of fluctuations in interdependent energy infrastructures: gas-grid coupling. Appl. Energy 160, 541–551 (2015)

    Article  Google Scholar 

  7. Chertkov, M., Fisher, M., Backhaus, S., Bent, R., Misra, S.: Pressure fluctuations in natural gas networks caused by gas-electric coupling. In: 48th Hawaii International Conference on System Sciences, pp. 2738–2747. IEEE, Piscataway (2015)

    Google Scholar 

  8. Colombo, R.M., Garavello, M.: A well-posed Riemann problem for the p-system at a junction. Netw. Heterogen. Media 1, 495–511 (2006)

    Article  MathSciNet  Google Scholar 

  9. Colombo, R.M., Garavello, M.: Euler system for compressible fluids at a junction. J. Hyperbolic Differ. Equ. 5, 547–568 (2008)

    Article  MathSciNet  Google Scholar 

  10. Després, B., Poëtte, G., Lucor, D.: Uncertainty quantification for systems of conservation laws. J. Comput. Phys. 228, 2443–2467 (2009)

    Article  MathSciNet  Google Scholar 

  11. Gerster, S., Herty, M., Sikstel, A.: Hyperbolic stochastic Galerkin formulation for the p-system. J. Comput. Phys. 395, 186–204 (2019)

    Article  MathSciNet  Google Scholar 

  12. Ghanem, R.G., Spanos, P.D.: Stochastic Finite Elements: A Spectral Approach. Springer, New York (1991)

    Book  Google Scholar 

  13. Gugat, M., Herty, M.: Existence of classical solutions and feedback stabilization for the flow in gas networks. ESAIM Control Optim. Calc. Var. 17, 28–51 (2011)

    Article  MathSciNet  Google Scholar 

  14. Moniz, E., Meggs, A., et al. The Future of Natural Gas. An Interdisciplinary MIT study. MIT Energy Initiative, Cambridge (2011)

    Google Scholar 

  15. Osiadacz, A.: Nonlinear programming applied to the optimum control of a gas compressor station. Int. J. Numer. Methods Eng. 15, 1287–1301 (1980)

    Article  MathSciNet  Google Scholar 

  16. Pettersson, P., Iaccarino, G., Nordström, J.: A stochastic Galerkin method for the Euler equations with Roe variable transformation. J. Comput. Phys. 257, 481–500 (2014)

    Article  MathSciNet  Google Scholar 

  17. Wiener, N.: The homogeneous chaos. Am. J. Math. 60(4), 897–936 (1938)

    Article  MathSciNet  Google Scholar 

  18. Xiu, D., Karniadakis, G.E.: The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24, 619–644 (2002)

    Article  MathSciNet  Google Scholar 

  19. Zlotnik, A., Roald, L., Backhaus, S., Chertkov, M., Andersson, G.: Control policies for operational coordination of electric power and natural gas transmission systems. In: 2016 American Control Conference (ACC), pp. 7478–7483. IEEE, Piscataway (2016)

    Google Scholar 

Download references

Acknowledgements

This work is supported by DFG HE5386/14,15, BMBF 05M18PAA, DFG-GRK 2326, Student Guest Program of Los Alamos National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Gerster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gerster, S., Herty, M., Chertkov, M., Vuffray, M., Zlotnik, A. (2019). Polynomial Chaos Approach to Describe the Propagation of Uncertainties Through Gas Networks. In: Faragó, I., Izsák, F., Simon, P. (eds) Progress in Industrial Mathematics at ECMI 2018. Mathematics in Industry(), vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-27550-1_8

Download citation

Publish with us

Policies and ethics