Skip to main content

Thermal Transport Equations and Boundary Conditions at the Nanoscale

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2018

Part of the book series: Mathematics in Industry ((TECMI,volume 30))

  • 819 Accesses

Abstract

The Guyer–Krumhansl equation is an extension to the classical Fourier law that is particularly appealing from a theoretical point of view because it provides a link between kinetic and continuum models and is based on well-defined physical parameters. Here we show how, subjected to a specific boundary condition analogous to the slip conditions for fluids, the Guyer–Krumhansl equation yields promising results in predicting the effective thermal conductivity of nanowires with circular and rectangular cross-sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvarez, F.X., Jou, D., Sellitto, A.: Phonon hydrodynamics and phonon-boundary scattering in nanosystems. J. Appl. Phys. 105(1), 014317 (2009)

    Article  Google Scholar 

  2. Cahill, D.G., Ford, W.K., Goodson, K.E., Mahan, G.D., Majumdar, A., Maris, H.J., Merlin, R., Phillpot, S.R.: Nanoscale thermal transport. J. Appl. Phys. 93(2), 793–818 (2003)

    Article  Google Scholar 

  3. Calvo-Schwarzwälder, M., Hennessy, M.G., Torres, P. Myers, T.G., Alvarez, F.X.: A slip-based model for the size-dependent effective thermal conductivity of nanowires. Int. Commun. Heat Mass Transfer 91, 57–63 (2018)

    Article  Google Scholar 

  4. Calvo-Schwarzwälder, M., Hennessy, M.G., Torres, P. Myers, T.G., Alvarez, F.X.: Effective thermal conductivity of rectangular nanowires based on phonon hydrodynamics. Int. J. Heat Mass Transfer 126, 1120–1128 (2018)

    Article  Google Scholar 

  5. Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148(2), 766 (1966)

    Article  Google Scholar 

  6. Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148(2), 778 (1966)

    Article  Google Scholar 

  7. Inyushkin, A.V., Taldenkov, A.N., Gibin, A.M., Gusev, A.V., Pohl, H.-J.: On the isotope effect in thermal conductivity of silicon. Phys. Stat. Sol. (C) 1(11), 2995–2998 (2004)

    Article  Google Scholar 

  8. Li, D., Wu, Y. Kim, P., Shi, L. Yang, P., Majumdar, A.: Thermal conductivity of individual silicon nanowires. Appl. Phys. Lett. 83(14), 2934–2936 (2003)

    Article  Google Scholar 

  9. Sellitto, A., Alvarez, F.X., Jou, D.: Temperature dependence of boundary conditions in phonon hydrodynamics of smooth and rough nanowires. J. Appl. Phys. 107(11), 114312 (2010)

    Article  Google Scholar 

  10. Sellitto, A., Alvarez, F.X., Jou, D.: Geometrical dependence of thermal conductivity in elliptical and rectangular nanowires. Int. J. Heat Mass Transfer 55(11), 3114–3120 (2012)

    Article  Google Scholar 

  11. Torres, P., Torelló, A., Bafaluy, J., Camacho, J., Cartoixà, X., Alvarez, F.X.: First principles kinetic-collective thermal conductivity of semiconductors. Phys. Rev. B 95(4), 165407 (2017)

    Article  Google Scholar 

  12. Zhang, Z. M.: Nano/Microscale Heat Transfer. McGraw Hill, New York (2017)

    Google Scholar 

  13. Zhu, C.-Y., YOu, W., Li, Z.-Y.: Nonlocal effects and slip heat flow in nanolayers. Sci. Rep. 7, 9568 (2017)

    Article  Google Scholar 

  14. Ziman, J.M.: Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press, Oxford (1960)

    MATH  Google Scholar 

Download references

Acknowledgements

M. C. acknowledges that the research leading to these results has received funding from “La Caixa” Foundation. M. H. has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 707658. T. M. acknowledges the support of a Ministerio de Ciencia e Innovacion grant MTM2017-82317-P. P. T. and F. X. A. acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness under Grant Consolider nanoTHERM CSD2010-00044, TEC2015-67462-C2-2-R (MINECO/FEDER), TEC2015-67462-C2-1-R (MINECO/FEDER). The authors have been partially funded by the CERCA Programme of the Generalitat de Catalunya.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Calvo-Schwarzwälder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Calvo-Schwarzwälder, M., Hennessy, M.G., Torres, P., Myers, T., Alvarez, F.X. (2019). Thermal Transport Equations and Boundary Conditions at the Nanoscale. In: Faragó, I., Izsák, F., Simon, P. (eds) Progress in Industrial Mathematics at ECMI 2018. Mathematics in Industry(), vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-27550-1_5

Download citation

Publish with us

Policies and ethics