Skip to main content

Modeling Neuronal Firing in Epilepsy: Fitting Hawkes Processes to Single-Unit Activity

  • Conference paper
  • First Online:
Progress in Industrial Mathematics at ECMI 2018

Part of the book series: Mathematics in Industry ((TECMI,volume 30))

Abstract

Forecasting seizures based on information extracted from neuronal firing has a great potential in controlling closed-loop neurostimulators. For the description of neuronal firing patterns we use self-exiting point processes or Hawkes processes. In fitting them to simulated data, using a large variety of models, we consider both computability and reliability issues related to the maximum likelihood estimation (MLE) method. The models are classified via a single parameter related to stability regimes. The dependence of the accuracy of the individual parameter estimates on different regimes will be explored. We demonstrate the applicability of the MLE method to discriminate between different models with high confidence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brémaud, P.: Point Processes and Queues: Martingale Dynamics. Springer, New York (1981)

    Book  Google Scholar 

  2. Chornoboy, E.S., Schramm, L.P., Karr, A.F.: Maximum likelihood identification of neural point process systems. Biol. Cybern. 59, 265–75 (1988)

    Article  MathSciNet  Google Scholar 

  3. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Springer Science & Business Media, New York (2013)

    MATH  Google Scholar 

  4. Gadhoumi, K., Lina, J.-M., Mormann, F., Gotman, J.: Seizure prediction for therapeutic devices: a review. J. Neurosci. Methods 29, 1–13 (2015)

    Google Scholar 

  5. Gerencsér, L., Matias, C., Vágó, Z., Torma, B., Weiss, B.: Self-exciting point processes with applications in finance and medicine. In: Proccedings of the 18th International Symposium on Mathematical Theory of Networks and Systems (MTNS2008), Virginia Tech, Blacksburg, Virginia, USA (2008)

    Google Scholar 

  6. Gerhard, F., Deger, M., Truccolo, W.: On the stability and dynamics of stochastic spiking neuron models: nonlinear Hawkes process and point process GLMs. PLoS Comp. Biol. 13, e1005390 (2017). https://doi.org/10.1371/journal.pcbi.1005390

    Article  Google Scholar 

  7. Hansen, N.R., Reynaud-Bouret, P., Rivoirard, V.: Lasso and probabilistic inequalities for multivariate point processes. Bernoulli 21, 83–143 (2015)

    Article  MathSciNet  Google Scholar 

  8. Hawkes, A.G.: Spectra of some self-exiciting and mutually exciting point processes. Biometrika 58, 83–90 (1971)

    Article  MathSciNet  Google Scholar 

  9. Kuhlmann, L., Grayden, D.B., Wendling, F., Schiff, S.J.: Role of multiple-scale modeling of epilepsy in seizure forecasting. J. Clin. Neurophysiol. 32, 220–226 (2015)

    Article  Google Scholar 

  10. Merricks, E.M., Smith, E.H., McKhann, G.M., Goodman, R.R., Bateman, L.M., Emerson, R.G., Schevon, C.A., Trevelyan, A.J.: Single unit action potentials in humans and the effect of seizure activity. Brain 138, 2891–2906 (2015)

    Article  Google Scholar 

  11. Møller, J., Rasmussen, J.G..: Perfect simulation of Hawkes processes. Adv. Appl. Probab. 37, 629–646 (2005)

    Article  MathSciNet  Google Scholar 

  12. Ozaki, T.: Maximum likelihood estimation of Hawkes’ self-exciting point processes. Ann. Inst. Stat. Math. 31, 145–155 (1979)

    Article  MathSciNet  Google Scholar 

  13. Quiroga, R.Q., Nadasdy, Z., Ben-Shaul, Y.: Unsupervised spike detection and sorting with wavelets and superparamagnetic clustering. Neural. Comput. 16, 1661–1687 (2004)

    Article  Google Scholar 

  14. Schulze-Bonhage, A., Kühn, A.: Unpredictability of seizures and the burden of epilepsy. In: Seizure Prediction in Epilepsy: From Basic Mechanisms to Clinical Applications, p. 1–10 (2008)

    Google Scholar 

  15. Truccolo, W., Donoghue, J.A., Hochberg, L.R., Eskandar, E.N., Madsen, J.R., Anderson, W.S., Brown, E.N., Halgren, E., Cash, S.S.: Single-neuron dynamics in human focal epilepsy. Nat. Neurosci. 14, 635–641 (2011)

    Article  Google Scholar 

  16. Ulbert, I., Maglóczky, Z., Erőss, L., Czirják, S., Vajda, J., Bognár, L., Tóth, S., Szabó, Z., Halász, P., Fabó, D., Halgren, E., Freund, T.F., Karmos, G.: In vivo laminar electrophysiology co-registered with histology in the hippocampus of patients with temporal lobe epilepsy. Exp. Neurol. 187, 310–318 (2004)

    Article  Google Scholar 

Download references

Acknowledgements

This research has been partially supported by the European Union, co-financed by the European Social Fund (EFOP-3.6.3-VEKOP-16-2017-00002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Gerencsér .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Perczel, G., Erőss, L., Fabó, D., Gerencsér, L., Vágó, Z. (2019). Modeling Neuronal Firing in Epilepsy: Fitting Hawkes Processes to Single-Unit Activity. In: Faragó, I., Izsák, F., Simon, P. (eds) Progress in Industrial Mathematics at ECMI 2018. Mathematics in Industry(), vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-27550-1_32

Download citation

Publish with us

Policies and ethics