Skip to main content

Extended Gaussian Approximation for Modeling the Quantum Dynamics of Localized Particles

  • Conference paper
  • First Online:
Book cover Progress in Industrial Mathematics at ECMI 2018

Part of the book series: Mathematics in Industry ((TECMI,volume 30))

  • 759 Accesses

Abstract

We derive a quantum model that provides some corrections to the classical motion of nearly localized particles. Our method is based on the assumption that the particle wave function is strongly localized and represented by a Gaussian shape. As an application of our method, we describe the motion of a particle in a 2D non harmonic potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maddox, J.B., Bittner, E.R.: J. Chem. Phys. 115, 6309 (2001)

    Article  Google Scholar 

  2. Wang, L., Zhang, Q., Xu, F., Cui, X.-D., Zheng, Y.: Int. J. Quantum Chem. 115, 208 (2015)

    Article  Google Scholar 

  3. Horowitz, J.M.: Phys. Rev. E 85, 031110 (2012)

    Article  Google Scholar 

  4. Poirier, B.: Trajectory-based derivation of classical and quantum mechanics. In: Hughes, K.H., Parlant G. (eds.) Quantum Trajectories, CCP6, Daresbury Laboratory (2011).

    Google Scholar 

  5. Singer, K.: Mol. Phys. 85, 701 (1995)

    Article  Google Scholar 

  6. Bronstein, Y., Depondt, P., Finocchi, F., Saitta, A.M.: Phys. Rev. B 89, 214101 (2014)

    Article  Google Scholar 

  7. Morandi, O.: J. Phys. A: Math. Theor. 43, 365302 (2010)

    Article  Google Scholar 

  8. Morandi, O.: J. Math. Phys. 53, 063302 (2012)

    Article  MathSciNet  Google Scholar 

  9. Sellier, J.M., Nedjalkov, M., Dimova, I.: Phys. Rep. 577, 1 (2015)

    Article  MathSciNet  Google Scholar 

  10. Muscato, O., Wagner, W.: SIAM J. Sci. Comput. 38(3), 1483 (2016)

    Article  MathSciNet  Google Scholar 

  11. Ceriotti, M., Bussi, G., Parrinello, M.: Phys. Rev. Lett. 103, 030603 (2009)

    Article  Google Scholar 

  12. Jin, S., Wei, D., Yin, D.: J. Comput. Appl. Math. 265, 199 (2014)

    Article  MathSciNet  Google Scholar 

  13. Morandi, O.: J. Phys. A: Math. Theor. 51, 255301 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Group of Mathematical Physics (GNFM-INdAM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar Morandi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Morandi, O. (2019). Extended Gaussian Approximation for Modeling the Quantum Dynamics of Localized Particles. In: Faragó, I., Izsák, F., Simon, P. (eds) Progress in Industrial Mathematics at ECMI 2018. Mathematics in Industry(), vol 30. Springer, Cham. https://doi.org/10.1007/978-3-030-27550-1_14

Download citation

Publish with us

Policies and ethics