Skip to main content

The Design of Inspection Robot Navigation Systems Based on Distributed Vision

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11744))

Included in the following conference series:

Abstract

This paper focuses on inspection robot navigation systems based on distributed vision in order to solve the navigation problem for indoor inspection robots in an unknown environment. Firstly, the robot platform of the navigation system is designed, the system is built, and the software of the host computer interface and driver of the bottom driver are designed. Secondly, the key technologies of path planning and image processing in visual navigation are studied theoretically and experimentally. Finally, the performance of the navigation system is tested. Experimental results demonstrate that the inspection robot navigation system based on distributed vision can undertake autonomous localization and navigation tasks in unknown environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Huang, H., Gartner, G.: A survey of mobile indoor navigation systems. In: Gartner, G., Ortag, F. (eds.) Cartography in Central and Eastern Europe. Lecture Notes in Geoinformation and Cartography, pp. 305–319. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03294-3_20

    Chapter  Google Scholar 

  2. Lambrinos, D., Möller, R., Labhart, T.: A mobile robot employing insect strategies for navigation. Robot. Auton. Syst. 30(1), 39–64 (2000)

    Article  Google Scholar 

  3. Kawaguchi, Y., Yoshida, I., Kurumatani, H.: Internal pipe inspection robot. Proc. IEEE 1, 857–862 (1995)

    Google Scholar 

  4. Baus, J., Wahlster, W.: A resource-adaptive mobile navigation system. In: DBLP, pp. 15–22 (2002)

    Google Scholar 

  5. Phillips, J.B.: Magnetic navigation. J. Theor. Biol. 180(4), 309–319 (1996)

    Article  MathSciNet  Google Scholar 

  6. Barshan, B., Durrant-Whyte, H.F.: An inertial navigation system for a mobile robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 3, pp. 2243–2248 (1993)

    Google Scholar 

  7. Gui, Y., Guo, P., Zhang, H.: Airborne vision-based navigation method for UAV accuracy landing using infrared lamps. J. Intell. Rob. Syst. 72(2), 197–218 (2013)

    Article  Google Scholar 

  8. Pagnottelli, S., Taraglio, S., Valigi, P.: Visual and laser sensory data fusion for outdoor robot localisation and navigation. In: Proceedings of the IEEE, pp. 171–177 (2005)

    Google Scholar 

  9. Kurz, A.: Constructing maps for mobile robot navigation based on ultrasonic range data. IEEE Trans. Syst. Man Cybern. Part B Cybern. Publ. IEEE Syst. Man Cybern. Soc. 26(2), 233–242 (1996)

    Article  Google Scholar 

  10. Gao, Y., Liu, S., Atia, M.M.: INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm. Sensors 15(9), 23286–23302 (2015)

    Article  Google Scholar 

  11. Liu, W., Zhang, S., Fan, S.A.: visual navigation method of substation inspection robot. In: International Conference on Progress in Informatics and Computing. IEEE (2017)

    Google Scholar 

  12. Indelman, V., Gurfil, P., Rivlin, E.: Distributed vision-aided cooperative localization and navigation based on three-view geometry. In: Aerospace Conference, pp. 1–20. IEEE (2011)

    Google Scholar 

  13. Nishimura, H., Nonami, T.: Image processing device and image processing method in image processing device. J. Oral Rehabil. 8(3), 203–208 (2018)

    Google Scholar 

  14. Yong, D.: Navigation for mobile robot based on uncertainty grid-map. Control Theory Appl. 23(6), 1009–1013 (2006)

    MATH  Google Scholar 

  15. Guruji, A.K., Agarwal, H., Parsediya, D.K.: Time-efficient A* algorithm for robot path planning. Proc. Technol. 23, 144–149 (2016)

    Article  Google Scholar 

  16. Stentz, A.: Optimal and efficient path planning for partially-known environments. In: Hebert, M.H., Thorpe, C., Stentz, A. (eds.) Intelligent Unmanned Ground Vehicles, vol. 388, pp. 203–222. Springer, Boston (1997). https://doi.org/10.1007/978-1-4615-6325-9_11

    Chapter  Google Scholar 

  17. Tu, J., Yang, S.X.: Genetic algorithm based path planning for a mobile robot. In: IEEE International Conference on Robotics and Automation, vol. 1, pp. 1221–1226 (2003)

    Google Scholar 

  18. Gutjahr, W.J.: Aco algorithms with guaranteed convergence to the optimal solution. Inf. Process. Lett. 82(3), 145–153 (2002)

    Article  MathSciNet  Google Scholar 

  19. Shang, R., Jiao, L., Gong, M., Lu, B.: Clonal selection algorithm for dynamic multiobjective optimization. In: Hao, Y., et al. (eds.) CIS 2005. LNCS (LNAI), vol. 3801, pp. 846–851. Springer, Heidelberg (2005). https://doi.org/10.1007/11596448_125

    Chapter  Google Scholar 

  20. Rais, H.M., Othman, Z.A., Hamdan, A.R.: Improved Dynamic Ant Colony System (DACS) on symmetric Traveling Salesman Problem (TSP). In: International Conference on Intelligent and Advanced Systems, pp. 43–48. IEEE (2008)

    Google Scholar 

  21. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vision 74(1), 59–73 (2007)

    Article  Google Scholar 

  22. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  23. Bay, H., Ess, A., Tuytelaars, T.: Speeded-Up Robust Features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  24. Rublee, E., Rabaud, V., Konolige, K.: ORB: an efficient alternative to SIFT or SURF. In: International Conference on Computer Vision, pp. 2564–2571. IEEE (2012)

    Google Scholar 

  25. Li, P., Zhu, H.: Parameter selection for ant colony algorithm based on bacterial foraging algorithm. Math. Probl. Eng. 3, 1–12 (2016)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by grant of the National Key Research and Development Program of China (No. 2018YFC0808000) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, L. et al. (2019). The Design of Inspection Robot Navigation Systems Based on Distributed Vision. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11744. Springer, Cham. https://doi.org/10.1007/978-3-030-27541-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27541-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27540-2

  • Online ISBN: 978-3-030-27541-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics