Skip to main content

Characteristic Frequency Input Neural Network for Inertia Identification of Tumbling Space Target

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11744))

Included in the following conference series:

Abstract

A novel characteristic frequency input network (CFIN) is investigated for inertia parameters identification of the tumbling space target from the quaternion measurements based on the back propagation neural network. The main innovation of the CFIN is it set the 15-dimensional characteristic frequency vector as the input of the neural network, which is extracted from the constant parameters of the target’s attitude quaternion. The utilization of the characteristic frequency not only reduces the required number of nodes to less than 100, but also improves the learning rate of the neural network. The CFIN is trained using 10000 samples and tested using another 2000 data. It can work well in real-time with very little computational burden and storage space once successfully trained. Moreover, effectiveness analysis illustrates that the CFIN can provide more precise estimation of the inertia parameters than the conventional estimation method, like extend Kalman filter and unscented Kalman filter in most case.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shan, M., Guo, J., Gill, E.: Review and comparison of active space debris capturing and removal methods. Prog. Aerosp. Sci. 80, 18–32 (2016)

    Article  Google Scholar 

  2. Li, Q., Yuan, J., Zhang, B., Gao, C.: Model predictive control for autonomous rendezvous and docking with a tumbling target. Aerosp. Sci. Technol. 69, 700–711 (2017)

    Article  Google Scholar 

  3. Angel Flores-Abad, O., Ma, K.P., Ulrich, S.: A review of space robotics technologies for onorbit servicing. Prog. Aerosp. Sci. 68, 1–26 (2014)

    Article  Google Scholar 

  4. Flores-Abad, A., Zhang, L., Wei, Z., Ma, O.: Optimal capture of a tumbling object in orbit using a space manipulator. J. Intell. Robot. Syst. 86(2), 199–211 (2017)

    Article  Google Scholar 

  5. Luo, J., Zong, L., Wang, M., Yuan, J.: Optimal capture occasion determination and trajectory generation for space robots grasping tumbling objects. Acta Astronautica 136, 380–386 (2017)

    Article  Google Scholar 

  6. Huang, P., Wang, M., Meng, Z., Zhang, F., Liu, Z.: Attitude takeover control for postcapture of target spacecraft using space robot. Aerosp. Sci. Technol. 51, 171–180 (2016)

    Article  Google Scholar 

  7. Zhang, B., Liang, B., Wang, Z., Mi, Y., Zhang, Y., Chen, Z.: Coordinated stabilization for space robot after capturing a noncooperative target with large inertia. Acta Astronautica 134, 75–84 (2017)

    Article  Google Scholar 

  8. Wei, C., Luo, J., Dai, H., Yuan, J.: Learning-based adaptive prescribed performance control of postcapture space robot-target combination without inertia identications. Acta Astronautica 146, 228–242 (2018)

    Article  Google Scholar 

  9. Wei, C., Luo, J., Xu, C., Yuan, J.: Low-complexity stabilization control of combined spacecraft with an unknown captured object. In: Control Conference (2017)

    Google Scholar 

  10. Aghili, F., Su, C.Y.: Robust relative navigation by integration of ICP and adaptive Kalman filter using laser scanner and IMU. IEEE/ASME Trans. Mechatron. 21(4), 2015–2026 (2016)

    Article  Google Scholar 

  11. Lim, T.W.: Point cloud modeling using the homogeneous transformation for non-cooperative pose estimation. Acta Astronautica 111, 61–76 (2015)

    Article  Google Scholar 

  12. Obermark, J., Henshaw, C.G.: SUMO/FREND: vision system for autonomous satellite grapple. In: Proceedings of SPIE - The International Society for Optical Engineerings, vol. 6555, pp. 65550Y–65550Y-11 (2007)

    Google Scholar 

  13. Xiaodong, D., Liang, B., Wenfu, X., Qiu, Y.: Pose measurement of large non-cooperative satellite based on collaborative cameras. Acta Astronautica 68(11), 2047–2065 (2011)

    Google Scholar 

  14. Aghili, F., Kuryllo, M., Okouneva, G., English, C.: Fault-tolerant position/attitude estimation of free-floating space objects using a laser range sensor. IEEE Sens. J. 11(1), 176–185 (2010)

    Article  Google Scholar 

  15. Augusteijn, M.F., Clemens, L.E., Shaw, K.A.: Performance evaluation of texture measures for ground cover identification in satellite images by means of a neural network classifier. IEEE Trans. Geosci. Remote. Sens. 33(3), 616–626 (1995)

    Article  Google Scholar 

  16. Zayan, M.A.: Satellite orbits guidance using state space neural network. In: IEEE Aerospace Conference Proceedings 2006. IEEE (2006)

    Google Scholar 

  17. Kim, S.-G., Crassidis, J.L., Cheng, Y., Fosbury, A.M., Junkins, J.L.: Kalman filtering for relative spacecraft attitude and position estimation. J. Guid. Control. Dyn. 30(1), 133–143 (2007)

    Article  Google Scholar 

  18. Harris, F.J.: On the use of windows for harmonic analysis with the discrete Fourier transform. Proc. IEEE 66(1), 51–83 (1978)

    Article  Google Scholar 

  19. Hotchkiss C, Weber E. A Fast Fourier Transform for Fractal Approximations. ar\(\rm {X}\)iv: Functional Analysis, pp. 315–329 (2017)

    Chapter  Google Scholar 

  20. Oran Brigham, E.: The Fast Fourier Transform and Its Applications, vol. 1. Prentice Hall, Englewood Cliffs (1988)

    MATH  Google Scholar 

  21. Van Loan, C.: Computational Frameworks for the Fast Fourier Transform. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  22. Ma, C., Wei, C., Yuan, J., et al.: Semi-synchronizing strategy for capturing a high-speed tumbling target. J. Guid. Control. Dyn. 41(12), 2615–2632 (2018)

    Article  Google Scholar 

  23. Ma, C., Dai, H., Yuan, J.: Estimation of inertial characteristics of tumbling spacecraft using constant state lter. Adv. Space Res. 60(3), 513–530 (2017)

    Article  Google Scholar 

  24. Guyaguler, B., Horne, R.N., Rogers, L.L., et al.: Optimization of well placement in a Gulf of Mexico waterflooding project. SPE Reserv. Eval. Eng. 5(03), 229–236 (2002)

    Article  Google Scholar 

  25. ucas, R.H., Smith, P.L., McKenzie, C.H., et al.: Neural network clutter filter for large-array mosaic sensors. In: International Joint Conference on Neural Network (1989)

    Google Scholar 

  26. Zhang, Q.J., Gupta, K.C.: Neural Networks for RF and Microwave Design. Artech House, Norwood (2000)

    Google Scholar 

  27. Haykin, S.: Kalman Filtering and Neural Networks. Wiley, New York (2001)

    Book  Google Scholar 

  28. Haykin, S.: Neural Network and Learning Machines. Prentice Hall, Upper Saddle River (2011)

    Google Scholar 

  29. Xin, M., Pan, H.: Nonlinear optimal control of spacecraft approaching a tumbling target. Aerosp. Sci. Technol. 15(2), 79–89 (2011)

    Article  Google Scholar 

  30. Crassidis, J.L., Landis Markley, F., Cheng, Y.: Survey of nonlinear attitude estimation methods. J. Guid. Control. Dyn. 30(1), 12–28 (2007)

    Article  Google Scholar 

  31. Aghili, F., Parsa, K.: Motion and parameter estimation of space objects using laser-vision data. J. Guid. Control. Dyn. 32(2), 538 (2009)

    Article  Google Scholar 

  32. Crassidis, J.L., Landis Markley, F.: Unscented filtering for spacecraft attitude estimation. J. Guid. Control. Dyn. 26(4), 536–542 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, C., Yuan, J., Che, D. (2019). Characteristic Frequency Input Neural Network for Inertia Identification of Tumbling Space Target. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11744. Springer, Cham. https://doi.org/10.1007/978-3-030-27541-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27541-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27540-2

  • Online ISBN: 978-3-030-27541-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics