A Hybrid Multiagent Collision Avoidance Method for Formation Control

  • Zezhi Sui
  • Zhiqiang PuEmail author
  • Jianqiang Yi
  • Tianyi Xiong
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11743)


Collision avoidance in formation control is an essential and challenging problem in multiagent filed. Specifically, the agents have to consider both formation maintenance and collision avoidance. However, this problem is not fully considered in existing works. This paper presents a hybrid collision avoidance method for formation control. The formation control is designed based on consensus theory while the collision avoidance is achieved by utilizing optimal reciprocal collision avoidance (ORCA). Furthermore, the stability of the multiagent systems is proved. Finally, a simulation demonstrates the effectiveness of the proposed method.


Collision avoidance Formation control Multiagent 



This work is supported by National Natural Science Foundation of China (NNSFC) No. 61603383, No. 61421004 and Beijing Advanced Innovation Center of Intelligent Robots and Systems under Grant 2016IRS23.


  1. 1.
    Das, A.K., Fierro, R., Kumar, V., Ostrowski, J.P., Spletzer, J., Taylor, C.J.: A vision-based formation control framework. IEEE Trans. Robot. Autom. 18(5), 813–825 (2002)CrossRefGoogle Scholar
  2. 2.
    Balch, T., Arkin, R.C.: Behavior-based formation control for multirobot teams. IEEE Trans. Robot. Autom. 14(6), 926–939 (1998)CrossRefGoogle Scholar
  3. 3.
    Lewis, M.A., Tan, K.H.: High precision formation control of mobile robots using virtual structures. Auton. Robots 4(4), 387–403 (1997)CrossRefGoogle Scholar
  4. 4.
    Richards, A., How, J.P.: Aircraft trajectory planning with collision avoidance using mixed integer linear programming. In: Proceedings of the 2002 American Control Conference, pp. 1936–1941. IEEE, Anchorage, USA (2002)Google Scholar
  5. 5.
    Kuriki, Y., Namerikawa, T.: Consensus-based cooperative formation control with collision avoidance for a multi-UAV system. In: 2014 American Control Conference, pp. 2077–2082. IEEE, Portland, USA (2014)Google Scholar
  6. 6.
    Mastellone, S., Stipanović, D.M., Graunke, C.R., Intlekofer, K.A., Spong, M.W.: Formation control and collision avoidance for multi-agent non-holonomic systems: theory and experiments. Int. J. Robot. Res. 27(1), 107–126 (2008)CrossRefGoogle Scholar
  7. 7.
    Khatib, O.: Real-time obstacle avoidance for manipulators and mobile robots. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation, pp. 500–505. IEEE. St. Louis, USA (1985)Google Scholar
  8. 8.
    Shi, Q., Li, T., Li, J., Chen, C.P., Xiao, Y., Shan, Q.: Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multi-agent systems. Neurocomputing 350, 282–290 (2019)CrossRefGoogle Scholar
  9. 9.
    Wen, G., Chen, C.P., Liu, Y.J.: Formation control with obstacle avoidance for a class of stochastic multiagent systems. IEEE Trans. Ind. Electron. 65(7), 5847–5855 (2018)CrossRefGoogle Scholar
  10. 10.
    Lee, S.M., Myung, H.: Receding horizon particle swarm optimisation-based formation control with collision avoidance for non-holonomic mobile robots. IET Control Theory Appl. 9(14), 2075–2083 (2015)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Van Den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: Pradalier, C., Siegwart, R., Hirzinger, G. (eds.) Robotics Research, vol. 70, pp. 3–19. Springer, Heidelberg (2011). Scholar
  12. 12.
    Hu, J., Hong, Y.: Leader-following coordination of multi-agent systems with coupling time delays. Physica A: Stat. Mech. Appl. 374(2), 853–863 (2007)CrossRefGoogle Scholar
  13. 13.
    Ren, W., Atkins, E.: Distributed multi-vehicle coordinated control via local information exchange. Int. J. Robust Nonlinear Control 17(10–11), 1002–1033 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zezhi Sui
    • 1
    • 2
  • Zhiqiang Pu
    • 1
    • 2
    Email author
  • Jianqiang Yi
    • 1
    • 2
  • Tianyi Xiong
    • 1
    • 2
  1. 1.Institute of AutomationChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations