Advertisement

Design of a Sensor Insole for Gait Analysis

  • Kamen Ivanov
  • Zhanyong Mei
  • Ludwig Lubich
  • Nan Guo
  • Deng Xile
  • Zhichun Zhao
  • Olatunji Mumini Omisore
  • Derek Ho
  • Lei WangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11743)

Abstract

There is an increasing interest in the application of instrumented insoles in sport and medicine to obtain gait information during activities of daily living. Despite the high number of research works dedicated to smart insole design, there is a lack of discussions on strategies to optimize the design of the force sensing electronic acquisition module. Such strategies are needed to achieve a small form factor while maintaining reliable kinetic data acquisition. In the present work, we describe our implementation of a smart insole and demonstrate channel multiplexing to optimize electronic component count. We discuss the details of the analog part, including the analog-to-digital conversion, optimal sampling frequency selection, and methods to reduce errors and influences of component imperfections. We demonstrated a complete framework for insole signal processing developed in Python. We used the insole prototype to collect data from twenty volunteers and implemented a basic algorithm for person recognition. As a result, we achieved a reasonable classification accuracy of 98.75%.

Keywords

Smart insole Channel multiplexing GaitPy Person recognition Gait analysis 

Notes

Acknowledgments

This project was supported in parts by the Key Project 2017GZ0304 of the Science and Technology Department of Sichuan province, Key Program of Joint Funds of the National Natural Science Foundation of China, grant U1505251, The Enhancement Project for Shenzhen Biomedical Electronics Technology Public Service Platform, and the Outstanding Youth Innovation Research Fund of SIAT-CAS, grant Y8G0381001.

References

  1. 1.
    Ochsmann, E., Noll, U., Ellegast, R., Hermanns, I., Kraus, T.: Influence of different safety shoes on gait and plantar pressure: a standardized examination of workers in the automotive industry. J. Occup. Health 58, 404–412 (2016)CrossRefGoogle Scholar
  2. 2.
    Connor, P., Ross, A.: Biometric recognition by gait: a survey of modalities and features. Comput. Vis. Image Underst. 167, 1–27 (2018)CrossRefGoogle Scholar
  3. 3.
    Ivanov, K., Mei, Z., Li, H., Du, W., Wang, L.: A custom base station for collecting and processing data of research-grade motion sensor units. In: Perego, P., Andreoni, G., Rizzo, G. (eds.) MobiHealth 2016. LNICST, vol. 192, pp. 11–18. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-58877-3_2CrossRefGoogle Scholar
  4. 4.
    Mei, Z., Ivanov, K., Zhao, G., Li, H., Wang, L.: An explorative investigation of functional differences in plantar center of pressure of four foot types using sample entropy method. Med. Biol. Eng. Comput. 55, 537–548 (2017)CrossRefGoogle Scholar
  5. 5.
    Crea, S., Donati, M., De Rossi, S.M.M., Oddo, C.M., Vitiello, N.: A wireless flexible sensorized insole for gait analysis. Sensors 14, 1073–1093 (2014)CrossRefGoogle Scholar
  6. 6.
    Razak, A.H.A., Zayegh, A., Begg, R.K., Wahab, Y.: Foot plantar pressure measurement system: a review. Sensors 12, 9884–9912 (2012)CrossRefGoogle Scholar
  7. 7.
    Schofield, J.S., Evans, K.R., Hebert, J.S., Marasco, P.D., Carey, J.P.: The effect of biomechanical variables on force sensitive resistor error: implications for calibration and improved accuracy. J. Biomech. 49, 786–792 (2016)CrossRefGoogle Scholar
  8. 8.
    Paredes-Madrid, L., Palacio, C.A., Matute, A., Parra Vargas, C.A.: Underlying physics of conductive polymer composites and force sensing resistors (FSRs) under static loading conditions. Sensors 17, 2108 (2017)CrossRefGoogle Scholar
  9. 9.
    TekScan: FlexiForce Sensors User ManualGoogle Scholar
  10. 10.
    Tekscan: FlexiForce Standard Model A301, datasheetGoogle Scholar
  11. 11.
    Gonzalez, I., Fontecha, J., Hervas, R., Bravo, J.: An ambulatory system for gait monitoring based on wireless sensorized insoles. Sensors 15, 16589–16613 (2015)CrossRefGoogle Scholar
  12. 12.
    Lee, W., Hong, S.-H., Oh, H.-W.: Characterization of elastic polymer-based smart insole and a simple foot plantar pressure visualization method using 16 electrodes. Sensors 19, 44 (2018)CrossRefGoogle Scholar
  13. 13.
    Ghaida, H.A., Mottet, S., Goujon, J.-M.: Foot modeling and smart plantar pressure reconstruction from three sensors. Open Biomed. Eng. J. 8, 84–92 (2014)CrossRefGoogle Scholar
  14. 14.
    Hegde, N., Bries, M., Sazonov, E.: A comparative review of footwear-based wearable systems. Electronics 5, 48 (2016)CrossRefGoogle Scholar
  15. 15.
    Tsai, D., Yuste, R., Shepard, K.L.: Statistically reconstructed multiplexing for very dense, high-channel-count acquisition systems. IEEE Trans. Biomed. Circuits Syst. 12, 13–23 (2018)CrossRefGoogle Scholar
  16. 16.
    Majewski, C., Perkins, A., Faltz, D., Zhang, F., Zhao, H., Xiao, W.: Design of a 3D printed insole with embedded plantar pressure sensor arrays. Presented at the Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers, Maui, Hawaii (2017)Google Scholar
  17. 17.
    Tekscan Inc.: Calibration Quick Start Guide for FlexiForce Sensors. Rev A, 06 October 2008Google Scholar
  18. 18.
    Interlink Electronics, Inc.: FSR Force Sensing Resistors, Integration Guide, Document part number EIG-10000 Rev. CGoogle Scholar
  19. 19.
    Yeh, K., Su, C., Chiu, W., Zhou, L.: I walk, therefore i am: continuous user authentication with plantar biometrics. IEEE Commun. Mag. 56, 150–157 (2018)CrossRefGoogle Scholar
  20. 20.
    Schneider, O.S., MacLean, K.E., Altun, K., Karuei, I., Wu, M.M.A.: Real-time gait classification for persuasive smartphone apps: structuring the literature and pushing the limits. Presented at the Proceedings of the 2013 International Conference on Intelligent User Interfaces, Santa Monica, California, USA (2013)Google Scholar
  21. 21.
    Wu, Y., Boyle, L.N., McGehee, D.V.: Evaluating variability in foot to pedal movements using functional principal components analysis. Accid. Anal. Prev. 118, 146–153 (2018)CrossRefGoogle Scholar
  22. 22.
    © Neurico company. https://neurico.com. Accessed 27 Apr 2019

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Kamen Ivanov
    • 1
    • 2
  • Zhanyong Mei
    • 3
  • Ludwig Lubich
    • 4
  • Nan Guo
    • 5
  • Deng Xile
    • 6
  • Zhichun Zhao
    • 7
  • Olatunji Mumini Omisore
    • 1
  • Derek Ho
    • 5
  • Lei Wang
    • 1
    Email author
  1. 1.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  2. 2.Shenzhen College of Advanced TechnologyUniversity of Chinese Academy of SciencesShenzhenChina
  3. 3.College of Cyber SecurityChengdu University of TechnologyChengduChina
  4. 4.Faculty of TelecommunicationsTechnical University of SofiaSofiaBulgaria
  5. 5.Department of Materials Science and EngineeringCity University of Hong KongKowloonHong Kong
  6. 6.Xi’an Polytechnic UniversityShaanxiChina
  7. 7.College of Information Science and TechnologyChengdu University of TechnologyChengduChina

Personalised recommendations