Advertisement

An Adaptive Parameter Identification Algorithm for Post-capture of a Tumbling Target

  • Jia Xu
  • Yang Yang
  • Yan Peng
  • Xiaomao Li
  • Shuanghua Zheng
  • Jianxiang CuiEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11743)

Abstract

In this paper, a new parameter identification scheme is proposed for an unknown tumbling target captured by the space manipulator. Due to the unknown and various dynamic parameters of the target and the strong nonlinear characteristics of the manipulator, it is difficult to achieve the capture operation with high tracking accuracy and low energy consumption. Aiming at the challenge, the parameter identification model of free-floating space manipulator is established based on the momentum conservation principle. Then, the VDW-RLS (variable data-window-size recursive least square) algorithm is applied to identify the inertia parameters. VDW-RLS algorithm can adjust the size of data window online according to the change of system parameters. SimMechanics simulation platform is employed to implement the three-dimensional model of 7-DOFs manipulator system. Simulation results show that the proposed algorithm has a fast tracking performance and low misalignment in the inertial parameter identification of the multi-DOFs space manipulator, and the control effect can be further improved by using the identified dynamic parameters.

Keywords

Space manipulator Parameter identification Momentum conservation VDW-RLS algorithm 

Notes

Acknowledgement

This study was supported by National Natural Science Foundation of China (Grant No. 61773254), Shanghai Sailing Program (Grant No. 17YF1406200), Shanghai Young Eastern Scholar Program (Grant No. QD2016029), and Shanghai civil-military integration program (Grant No. JMRH-2018-1043).

References

  1. 1.
    Wang, M., Luo, J., Yuan, J.: Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target. Nonlinear Dyn. 92(3), 1023–1043 (2018)CrossRefGoogle Scholar
  2. 2.
    Aghili, F.: Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite. In: IEEE/RSJ International Conference on Intelligent Robots & Systems. IEEE Press (2009)Google Scholar
  3. 3.
    Stolfi, A., Gasbarri, P., Sabatini, M.: A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target. Acta Astronautica 139, 243–253 (2017)CrossRefGoogle Scholar
  4. 4.
    Aghili, F., Parsa, K.: Motion and parameter estimation of space objects using laser-vision data. J. Guid. Control Dyn. 32(2), 538–550 (2009)CrossRefGoogle Scholar
  5. 5.
    Hillenbrand, U., Lampariello, R.: Motion and parameter estimation of a free-floating space object from range data for motion prediction. In: 8th International Symposium on Artificial Intelligence, Robotics and Automation in Space, DLR (2005)Google Scholar
  6. 6.
    Murotsu, Y., Senda, K., Ozaki, M.: Parameter identification of unknown object handled by free-flying space robot. J. Guid. Control Dyn. 17(3), 488–494 (1994)CrossRefGoogle Scholar
  7. 7.
    Yoshida, K., Abiko, S.: Inertia parameter identification of a free-flying space robot. Trans. Jpn. Soc. Mech. Eng. AIAA 68(672), 2002–4568 (2002)Google Scholar
  8. 8.
    Ou, M., Dang, H., Pham, K.: On-orbit identification of inertia properties of spacecraft using a robotic arm. J. Guid. Control Dyn. 31(6), 1761–1771 (2012)Google Scholar
  9. 9.
    Wilson, E., Lages, C., Mah, R.: On-line gyro-based, mass-property identification for thruster-controlled spacecraft using recursive least squares. In: Symposium on Circuits & Systems. IEEE (2002)Google Scholar
  10. 10.
    Goodwin, G.C., Teoh, E.K., Elliott, H.: Deterministic convergence of a self-tuning regulator with covariance resetting. IEE Proc. D Control Theory Appl. 130(1), 6–8 (1983)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ding, F., Xiao, Y.: A finite-data-window least squares algorithm with a forgetting factor for dynamical modeling. Appl. Math. Comput. 186(1), 184–192 (2007)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Yu, S.C., Cho, H.: Variable data-window-size recursive least-squares algorithm for dynamic system identification. Electron. Lett. 51(4), 341–343 (2015)CrossRefGoogle Scholar
  13. 13.
    Chu, Z., Ma, Y., Cui, J.: Adaptive reactionless control strategy via the PSO-ELM algorithm for free-floating space robots during manipulation of unknown objects. Nonlinear Dyn. (2017)Google Scholar
  14. 14.
    Nguyen-Huynh, T.C., Sharf, I.: Adaptive reactionless motion and parameter identification in postcapture of space debris. J. Guid. Control Dyn. 36(2), 404–414 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jia Xu
    • 1
  • Yang Yang
    • 1
  • Yan Peng
    • 1
  • Xiaomao Li
    • 1
  • Shuanghua Zheng
    • 1
  • Jianxiang Cui
    • 1
    Email author
  1. 1.Shanghai UniversityShanghaiChina

Personalised recommendations