Advertisement

A Smooth Gait Planning Framework for Quadruped Robot Based on Virtual Model Control

  • Jian Tian
  • Chao MaEmail author
  • Cheng Wei
  • Yang Zhao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11743)

Abstract

The smooth gait of robot plays an essential role in the locomotion, which influences by constraint from ground. Most of the planning algorithms centered on the characteristics of periodicity and amplitude of joint angles, and lost sight of the continuity of displacement and velocity of food trajectories. In this paper, the rhythmicity of robot body was studied in linear motion, according of which the smooth gait constrained by boundary conditions was planned by Hermite interpolation. In order to ensure the stability of robot posture during the movement, the strategy of virtual model control (VMC) was introduced and PD control method was used to track joint angles. The results and feasibility were verified by dynamics simulations finally.

Keywords

Quadruped robot Smooth gait Planning framework Virtual model control 

Notes

Acknowledgments

This research was supported, in part, by the National Natural Science Foundation of China (No. 51875393) and by the China Advance Research for Manned Space Project (No. 030601).

References

  1. 1.
    Ajallooeian, M., Pouya, S., Sprowitz, A., Ijspeert, A.: Central pattern generators augmented with virtual model control for quadruped rough terrain locomotion. In: Proceedings - IEEE International Conference on Robotics and Automation, May 2013Google Scholar
  2. 2.
    Boaventura, T., Buchli, J., Semini, C., Caldwell, D.G.: Model-based hydraulic impedance control for dynamic robots. IEEE Trans. Robot. 31(6), 1324–1336 (2015)CrossRefGoogle Scholar
  3. 3.
    Buchli, J., Ijspeert, A.J.: Self-organized adaptive legged locomotion in a compliant quadruped robot. Auton. Rob. 25(4), 331 (2008).  https://doi.org/10.1007/s10514-008-9099-2CrossRefGoogle Scholar
  4. 4.
    Estremera, J., Waldron, K.J.: Thrust control, stabilization and energetics of a quadruped running robot. Int. J. Robot. Res. 27, 1135–1151 (2008)CrossRefGoogle Scholar
  5. 5.
    Focchi, M., del Prete, A., Havoutis, I., Featherstone, R., Caldwell, D.G., Semini, C.: High-slope terrain locomotion for torque-controlled quadruped robots. Auton. Robots 41(1), 259–272 (2017).  https://doi.org/10.1007/s10514-016-9573-1CrossRefGoogle Scholar
  6. 6.
    Hui-shu, M., Jian-Jun, F.: Foot trajectory planning and optimization simulation of low foot-terrain impact by quadruped robot based on the Trot Gait. J. Electr. Electron. Eng. 6(1), 26 (2018). http://sciencepg.com/journal/paperinfo?journalid=239&paperId=10029462
  7. 7.
    Hutter, M., Gehring, C., Höpflinger, M.A., Blösch, M., Siegwart, R.: Toward combining speed, efficiency, versatility, and robustness in an autonomous quadruped. IEEE Trans. Robot. 30(6), 1427–1440 (2014)CrossRefGoogle Scholar
  8. 8.
    Jeong, K.M., Oh, J.H.: An aperiodic straight motion planning method for a quadruped walking robot. Auton. Robots 2(1), 29–41 (1995).  https://doi.org/10.1007/BF00735437CrossRefGoogle Scholar
  9. 9.
    Kimura, H., Akiyama, S., Sakurama, K.: Realization of dynamic walking and running of the quadruped using neural oscillator. Auton. Robots 7(3), 247–258 (1999).  https://doi.org/10.1023/A:1008924521542CrossRefGoogle Scholar
  10. 10.
    Koo, I.M., et al.: Biologically inspired gait transition control for a quadruped walking robot. Auton. Robots 39(2), 169–182 (2015).  https://doi.org/10.1007/s10514-015-9433-4MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ma, J., Bajracharya, M., Susca, S., Matthies, L., Malchano, M.: Real-time pose estimation of a dynamic quadruped in GPS-denied environments for 24-hour operation. Int. J. Robot. Res. 35, 631–653 (2015)CrossRefGoogle Scholar
  12. 12.
    Moro, F.L., et al.: Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot. Biol. Cybern. 107(3), 309–320 (2013).  https://doi.org/10.1007/s00422-013-0551-9MathSciNetCrossRefGoogle Scholar
  13. 13.
    Righetti, L., Buchli, J., Mistry, M., Kalakrishnan, M., Schaal, S.: Optimal distribution of contact forces with inverse dynamics control. Int. J. Robot. Res. 32, 280–298 (2013)CrossRefGoogle Scholar
  14. 14.
    Shao, J., Ren, D., Gao, B.: Recent advances on gait control strategies for hydraulic quadruped robot. Recent Patents Mech. Eng. 11, 15–23 (2018)CrossRefGoogle Scholar
  15. 15.
    Soo Park, H., Floyd, S., Sitti, M.: Roll and pitch motion analysis of a biologically inspired quadruped water runner robot. Int. J. Robot. Res. 29, 1281–1297 (2010)CrossRefGoogle Scholar
  16. 16.
    Sprowitz, A., Tuleu, A., Vespignani, M., Ajallooeian, M.: Towards dynamic trot gait locomotion design, control, and experiments with cheetah-cub, a compliant quadruped robot. Int. J. Robot. Res. 35, 649–655 (2013)Google Scholar
  17. 17.
    Ugurlu, B., Havoutis, I., Semini, C., Kayamori, K., Caldwell, D.G., Narikiyo, T.: Pattern generation and compliant feedback control for quadrupedal dynamic trot-walking locomotion: experiments on RoboCat-1 and HyQ. Auton. Robots 38(4), 415–437 (2015).  https://doi.org/10.1007/s10514-015-9422-7CrossRefGoogle Scholar
  18. 18.
    Yi, S.: Reliable gait planning and control for miniaturized quadruped robot pet. Mechatronics 20(4), 485–495 (2010). http://www.sciencedirect.com/science/article/pii/S0957415810000747CrossRefGoogle Scholar
  19. 19.
    Zico Kolter, J., Ng, A.Y.: The Stanford LittleDog: a learning and rapid replanning approach to quadruped locomotion. Int. J. Robot. Res. 30(2), 150–174 (2011).  https://doi.org/10.1177/0278364910390537CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Aerospace EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Beijing Key Laboratory of Intelligent Space Robotic Systems Technology and ApplicationsBeijing Institute of Spacecraft System EngineeringBeijingChina

Personalised recommendations