A Self-calibration Method of Lander Manipulator for Deep Space Exploration Mission

  • Qingxuan Jia
  • Wen Shao
  • Gang ChenEmail author
  • Yifan Wang
  • Lanpu Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11743)


In view of the characteristics of the lander in deep space exploration mission, a self-calibration method of kinematics parameters is proposed; it uses the hand-eye camera at the end of the manipulator as the measuring equipment to calibrate the kinematics parameters of the manipulator carried on the lander. By establishing the kinematic model contains the relative pose of manipulator’s base coordinate and target coordinate, and then establishing the kinematic error model of the lander manipulator system to realize the kinematics parameters calibration. The method realizes the kinematics parameters calibration under the condition of unknown of the relative pose of base coordinate system and target coordinate system, and calibrates the manipulator base coordinates in inertial system and the hand-eye relation at the same time. Through simulation experiments, it is verified that the self-calibration method proposed in this paper can obtain accurate kinematics parameters and effectively improve the accuracy of the lander manipulator terminal pose.


Self-calibration Deep space exploration Lander manipulator 


  1. 1.
    Weixin, Jiao: Semi-global leaderless consensus of circular motion with input saturation. Spacecraft Environ. Eng. 35(02), 103–110 (2018)Google Scholar
  2. 2.
    Yuan, Y., Zhao, C., Hu, Z.: Prospect of lunar base construction scheme. J. Deep Space Explor. 6(4), 374–381 (2018)Google Scholar
  3. 3.
    Chen, G., Li, T., Chu, M., et al.: Review on kinematics calibration technology of serial robots. Int. J. Precis. Eng. Manuf. 15(8), 1759–1774 (2014)CrossRefGoogle Scholar
  4. 4.
    Liu, D., Li, H., Li, Z.: Calibration strategy of space manipulator system on-orbit servicing fine operation. J. Astronaut. 38(06), 630–637 (2017)Google Scholar
  5. 5.
    Marwan, A., Simic, M., Imad, F.: Calibration method for articulated industrial robots. Procedia Comput. Sci. 112, 1601–1610 (2017)CrossRefGoogle Scholar
  6. 6.
    Zhou, W., Wei, B., Li, H., et al.: Accurate calibration of kinematic parameters in long-reach space manipulator. Manned Spaceflight 22(4), 466–470 (2016)Google Scholar
  7. 7.
    Richter, L.: Robust real-time robot/camera calibration. Robot. Transcranial Mag. Stimulation 63–84 (2013)Google Scholar
  8. 8.
    Li, H., Jiang, Z., He, Y., et al.: Vision-based space manipulator online self-calibration. In: 2009 IEEE International Conference on Robotics & Biomimetics, pp. 1768–1772. IEEE Computer Society, Washington (2009)Google Scholar
  9. 9.
    Wang, Y., Wei, Q., Hu, C., et al.: A self-calibration method for space manipulators based on POE formula. J. Beijing Univ. Aeronaut. Astronaut. 44(11), 2336–2342 (2018)Google Scholar
  10. 10.
    Schroer, K., Albright, S.L., Grethlein, M.: Complete, minimal and model-continuous kinematic models for robot calibration. Robot. Comput. Integr. Manuf. 13(1), 73–85 (1997)CrossRefGoogle Scholar
  11. 11.
    Zhuang, H., Roth, Z.S., Hamano, F.: A complete and parametrically continuous kinematic model for robot manipulators. IEEE Trans. Robot. Autom. 8(4), 451–463 (1992)CrossRefGoogle Scholar
  12. 12.
    Zhuang, H., Wang, L.K., Roth, Z.S.: Error-model-based robot calibration using a modified CPC model[J]. Robot. Comput. Integr. Manuf. 10(4), 287–299 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Qingxuan Jia
    • 1
  • Wen Shao
    • 1
  • Gang Chen
    • 1
    Email author
  • Yifan Wang
    • 1
  • Lanpu Li
    • 1
  1. 1.Beijing University of Posts and TelecommunicationsBeijingChina

Personalised recommendations