Advertisement

Haptic Feedback with a Reservoir Computing-Based Recurrent Neural Network for Multiple Terrain Classification of a Walking Robot

  • Pongsiri Borijindakul
  • Noparit Jinuntuya
  • Poramate ManoonpongEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11743)

Abstract

Terrain classification is an important feature for walking robots because it allows the robots to stably move and operate on the terrain. Different terrain classification techniques have been developed. The techniques include the use of different exteroceptive and proprioceptive sensors with different classification methods. Whereas these techniques have been widely used to classify flat, hard, and rough terrains, their application to soft terrains has not been fully addressed. Achieving soft-terrain classification will expand the operational range of walking robots. Thus, in this study, we propose a new technique to classify various terrains including soft ones. The technique exploits haptic feedback (expressed only through ground contact force measurement of a legged robot) and neurodynamics with the temporal memory of a reservoir computing-based recurrent neural network. We used six different terrains to evaluate the performance of the proposed technique. The terrains include sand (loose ground), foams with different softness levels (soft ground), and floor (hard ground). The experimental results show that we can successfully classify all terrains with an accuracy of above 70%. Furthermore, owing to the temporal memory of the network, if the haptic feedback is transiently missing, the network will be still be able to classify the terrain considerably well.

Keywords

Terrain classification Soft terrains Haptic feedback Neural networks Walking machines 

Notes

Acknowledgments

This work was supported by the Capacity Building on Academic Competency of KU Students from Kasetsart University, Thailand, the Thousand Talents program of China, and the National Natural Science Foundation of China (Grant No. 51861135306).

References

  1. 1.
    Williamson, D., Kottege, N., Moghadam, P.: Terrain characterisation and gait adaptation by a hexapod robot. In: Australasian Conference on Robotics and Automation (ARAA), Brisbane, QLD, Australia (2016)Google Scholar
  2. 2.
    Stejskal, M., Mrva, J., Faigl, J.: Road following with blind crawling robot. In: International Conference on Robotics and Automation (ICRA), pp. 3612–3617. IEEE, Stockholm (2016).  https://doi.org/10.1109/ICRA.2016.7487544
  3. 3.
    Krebs, A., Pradalier, C., Siegwart, R.: Comparison of boosting based terrain classification using proprioceptive and exteroceptive data. In: Khatib, O., Kumar, V., Pappas, G.J. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 54, pp. 93–102. Springer, Heidelberg (2008).  https://doi.org/10.1007/9783642001963_11CrossRefGoogle Scholar
  4. 4.
    Homberger, T., Bjelonic, M., Kottege, N., Borges, P.V.K.: Terrain-dependant control of hexapod robots using vision. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds.) International Symposium on Experimental Robotics (ISER). Springer Proceedings in Advanced Robotics, vol. 1, pp. 92–102. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-50115-4_9CrossRefGoogle Scholar
  5. 5.
    Zenker, S., Aksoy, E.E., Goldschmidt, D., Wörgötter, F., Manoonpong, P.: Visual terrain classification for selecting energy efficient gaits of a hexapod robot. In: International Conference on Advanced Intelligent Mechatronics, pp. 577–584. IEEE/ASME, Wollongong (2013).  https://doi.org/10.1109/AIM.2013.6584154
  6. 6.
    Hoepflinger, M.A., Remy, C.D., Hutter, M., Spinello, L., Siegwart, R.: Haptic terrain classification for legged robots. In: International Conference on Robotics and Automation, pp. 577–584. IEEE, Anchorage (2010).  https://doi.org/10.1109/ROBOT.2010.5509309
  7. 7.
    Kesper, P., Grinke, E., Hesse, F., Wörgötter, F., Manoonpong, P.: Obstacle/gap detection and terrain classification of walking robots based on a 2D laser range finder. In: 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines (CLAWAR), Australia, pp. 419–426 (2013).  https://doi.org/10.1142/9789814525534_0053
  8. 8.
    Mrva, J., Faigl, J.: Tactile sensing with servo drives feedback only for blind hexapod walking robot. In: 10th International Workshop on Robot Motion and Control (RoMoCo). IEEE, Poznan (2015).  https://doi.org/10.1109/RoMoCo.2015.7219742
  9. 9.
    Walas, K.: Tactile sensing for ground classification. J. Autom. Mobile Robot. Intell. Syst 7(2), 18–23 (2013)Google Scholar
  10. 10.
    Wu, X.A., Huh, T.M., Mukherjee, R., Cutkosky, M.: Integrated ground reaction force sensing and terrain classification for small legged robots. IEEE Robot. Autom. Lett 1(2), 1125–1132 (2016)CrossRefGoogle Scholar
  11. 11.
    Best, G., Moghadam, P., Kottege, N., Kleeman, L.: Terrain classification using a hexapod robot. In: Guivant, J., Eaton, R. (eds.) Proceedings of the Australasian Conference on Robotics and Automation (ACRA), Sydney, Australia, pp. 1–8 (2013)Google Scholar
  12. 12.
    Hoepflinger, M.A., Remy, C.D., Hutter, M., Spinello, L., Siegwart, R.: Haptic terrain classification for legged robots. In: 2010 IEEE International Conference on Robotics and Automation, pp. 2828–2833. IEEE, Anchorage (2010).  https://doi.org/10.1109/ROBOT.2010.5509309
  13. 13.
    Jonas, D., Cauwenbergh, R.V., Wyffels, F., Waegeman, T., Schrauwen, B.: Terrain classification for a quadruped robot. In: 2013 12th International Conference on Machine Learning and Applications, vol. 1, pp. 185–190. IEEE, Miami (2013).  https://doi.org/10.1109/ICMLA.2013.39
  14. 14.
    Manoonpong, P., Parlitz, U., Wörgötter, F.: Neural control and adaptive neural forward models for insect-like, energy-efficient, and adaptable locomotion of walking machines. Front. Neural Circ. 7(12), 1–28 (2013)Google Scholar
  15. 15.
    Steingrube, S., Timme, M., Wörgötter, F., Manoonpong, P.: Self-organized adaptation of simple neural circuits enables complex robot behavior. Nat. Phys. 6, 224–230 (2010)CrossRefGoogle Scholar
  16. 16.
    Jaeger, H., Hass, H.: Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304(5667), 78–80 (2004)CrossRefGoogle Scholar
  17. 17.
    Dasgupta, S., Wörgötter, F., Manoonpong, P.: Information dynamics based self-adaptive reservoir for delay temporal memory tasks. Evolving Syst. 4(4), 235–249 (2013)CrossRefGoogle Scholar
  18. 18.
    Jaeger, H.: Adaptive nonlinear system identification with echo state networks. In: Advances in Neural Information Processing Systems, pp. 593–600 (2003)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Pongsiri Borijindakul
    • 1
  • Noparit Jinuntuya
    • 2
  • Poramate Manoonpong
    • 1
    • 3
    Email author
  1. 1.Institute of Bio-inspired Structure and Surface Engineering, College of Mechanical and Electrical EngineeringNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Department of Physics, Faculty of ScienceKasetsart UniversityBangkokThailand
  3. 3.CBR Embodied AI and Neurorobotics Lab, The MærskMc-Kinney Møller InstituteUniversity of Southern DenmarkOdense MDenmark

Personalised recommendations