Skip to main content

Design and Integration of a Reconfiguration Robot

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11742))

Included in the following conference series:

  • 3125 Accesses

Abstract

Based on the kinematic topology of bionic robot and robot motion planning modeling, this paper designs the mechanical structure of highly integrated robotic joint module, the fast self-reconfigurable module, the drive control software, and the hardware for the system. Through the experimental verification and simulation data analysis, the robot joint module and the fast self-reconfiguration module designed in this paper meet the performance requirement of the reconfigurable intelligent robot. Finally, the prototype verification of the reconfigurable intelligent robot is realized in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Will, P., Castano, A., Shen, W.-M.: Robot modularity for self-reconfiguration. In: Proceedings of SPIE Sensor Fusion and Decentralized Control in Robotic Systems II, vol. 3839, pp. 236–245 (1999)

    Google Scholar 

  2. Suh, J.W., Homans, S.B., Yim, M.: Telecubes: mechanical design of a module for a self-reconfigurable robotics. In: International Conference on Robotics and Automation, pp. 4095–4101. IEEE, Washington DC (2002)

    Google Scholar 

  3. Kotay, K., Rus, D., Vona, M., McGray, C.: The self-reconfiguring robotic molecule: design and control algorithms. In: Algorithmic Foundations of Robotics (1998)

    Google Scholar 

  4. Murata, S., Kurokawa, H., Yoshida, E., Tomita, K., Kokaji, S.: A 3-D self-reconfigurable structure. In: 1998 IEEE International Conference on Robotics and Automation, pp. 432–439. IEEE, Leuven (1998)

    Google Scholar 

  5. Rus, D., Vona, M.: Self-reconfiguration planning with compressible unit modules. In: 1999 IEEE International Conference on Robotics and Automation, pp. 2513–2520. IEEE, Detroit (1999)

    Google Scholar 

  6. Yim, M., Zhang, Y., Roufas, K., Duff, D., Eldershaw, C.: Connecting and disconnecting for chain self-reconfiguration with PolyBot. IEEE/ASME Trans. Mechatron. 7, 442–451 (2000)

    Article  Google Scholar 

  7. Yim, M., Duff, D.G., Roufas, K.D.: PolyBot: a modular reconfigurable robot. In: IEEE International Conference on Robotics and Automation, pp. 514–520. IEEE, San Francisco (2000)

    Google Scholar 

  8. Zhang, Y., Roufas, K., Eldershaw, C., Yim, M., Duff, D.: Sensor computations in modular self reconfigurable robots. In: Siciliano, B., Dario, P. (eds.) Experimental Robotics VIII. STAR, vol. 5, pp. 276–286. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36268-1_24

    Chapter  Google Scholar 

  9. Guan, X., Zheng, H., Zhang, X.: Biologically inspired quadruped robot biosbot: modeling, simulation and experiment. In: 2nd International Conference on Autonomous Robots and Agents, pp. 261–266. IEEE, Palmerston North (2004)

    Google Scholar 

  10. Hayashi, I., Iwatsuki, N., Iwashina, S.: The running characteristics of a screw-principle microrobot in a small bent pipe. In: Sixth International Symposium on Micro Machine and Human Science, pp. 225–228. IEEE, Nagoya (1995)

    Google Scholar 

  11. Arikawa, K., Hirose, S.: Development of quadruped walking robot TITAN-VIII. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 208–214. IEEE, Osaka (1996)

    Google Scholar 

  12. Denavit, J., Hartenberg, R.: A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME J. Appl. Mech. 23, 215–221 (1955)

    MathSciNet  MATH  Google Scholar 

  13. Park, F.C., Kim, M.W.: Lie theory, Riemannian geometry, and the dynamics of coupled rigid bodies. Zeitschrift fur angewandte Mathematik und Physik ZAMP 51(5), 820–834 (2001)

    Article  MathSciNet  Google Scholar 

  14. Mladenova, C.D.: Group-theoretical methods in manipulator kinematics and symbolic computations. J. Intell. Syst. 8(1), 21–34 (1993)

    Article  Google Scholar 

  15. Craig, J.J.: Inroduction to Robotics, 3rd edn. China Machine Press, Beijing (2005)

    Google Scholar 

  16. The Kollmorgen Torquer Brushless Motor Series direct drive frameless motor. https://www.kollmorgen.com/en-us/products/motors/direct-drive/tbm-series/

  17. The Leaderdriver LHSG-I Series harmonic reducer. http://www.leaderdrive.om/product.-hp?id=21

  18. Li, J., Tan, Q., Zhang, Y., Zhang, K.: Study on the calculation of magnetic force based on the equivalent magnetic charge method. In: 2012 International Conference on Applied Physics and Industrial Engineering, Physics Procedia, pp. 190–197 (2012)

    Google Scholar 

  19. STMicroelectroincs, STM32F103 devices use the Cortex-M3 core, with a maximum CPU speed of 72 Mhz. https://www.st.com/en/microcontrollers-microprocessorsstm32f103.html

  20. Hirose, S., Yoneda, K., Tsukagoshi, H.: TITAN VII: quadruped walking and manipulating robot on a steep slope. In: IEEE International Conference on Robotics and Automation, pp. 494–500. IEEE, Albuquerque (1997)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (No. U1813216 and No. 61803221), the Science and Technology Research Foundation of Shenzhen (JCYJ20160301100921349 and JCYJ20170817152701660). The author is thankful to several brilliant engineers, including: Xingzhang Wu, Guanyu Wang (HIT), Ruiping Zhao, Xun Ran, and Shuanglong Li, Jing Xiao for providing support and necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Houde Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, J., Liu, H., Yuan, B., Liang, L., Liang, B. (2019). Design and Integration of a Reconfiguration Robot. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11742. Springer, Cham. https://doi.org/10.1007/978-3-030-27535-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27535-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27534-1

  • Online ISBN: 978-3-030-27535-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics