Skip to main content

A Novel Dual-Drive Soft Pneumatic Actuator with the Improved Output Force

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11742))

Abstract

This paper presents a novel dual-drive soft pneumatic network actuator consisting of a series of chambers made of elastomeric material, an inextensible bottom layer (paper), the rigid parts, the tendon, and coffee granular cavity. The soft actuator is the most important part when establishing soft robotic systems and can be used to make the soft gripper. The fabrication process of the soft actuator is presented. The proposed actuator has the design of the decreasing chamber height, which is beneficial to improving the output force and the contact area with the object. The proposed actuator has a cavity filled with coffee granular in the bottom, which improves the contact area and grasping stability. The tendon-pneumatic dual-drive and rigid parts between the adjacent chambers increase the force of the soft actuator. The bending angle model of the soft actuator is established briefly based on the elongation of the spacing layer and the contact layer of the soft actuator. The experiments prove that the proposed actuator has the significant improved output force.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Lee, C., et al.: Soft robot review. Int. J. Control Autom. Syst. 15(1), 3–15 (2017)

    Article  Google Scholar 

  2. Trimmer, B.: Soft robots. Curr. Biol. 23(15), R639–R641 (2013)

    Article  Google Scholar 

  3. Yap, H., Ng, H., Yeow, C.: High-force soft printable pneumatics for soft robotic applications. Soft Robot. 3(3), 144–158 (2016)

    Article  Google Scholar 

  4. Glick, P., Suresh, S.A., Ruffatto, D., Cutkosky, M., Tolley, M.T., Parness, A.: A soft robotic gripper with gecko-inspired adhesive. IEEE Robot. Autom. Lett. 3(2), 903–910 (2018)

    Article  Google Scholar 

  5. Zhou, J., Chen, S., Wang, Z.: A soft-robotic gripper with enhanced object adaptation and grasping reliability. IEEE Robot. Autom. Lett. 2(4), 2287–2293 (2017)

    Article  Google Scholar 

  6. Ranzani, T., Gerboni, G., Cianchetti, M., Menciassi, A.: A bioinspired soft manipulator for minimally invasive surgery. Bioinspir. Biomim. 10(3), 035008 (2015)

    Article  Google Scholar 

  7. Mosadegh, B., et al.: Pneumatic networks for soft robotics that actuate rapidly. Adv. Funct. Mater. 24(15), 2163–2170 (2014)

    Article  Google Scholar 

  8. Nikolov, S., Kotev, V., Kostadinov, K., Wang, F., Liang, C., Tian, Y.: Model-based design optimization of soft fiber-reinforced bending actuators. In: Proceedings of the IEEE 3M-NANO, pp. 136–140 (2016)

    Google Scholar 

  9. Chun, C., Hannaford, B.: Measurement and modeling of McKibben pneumatic artificial muscles. IEEE Trans. Robot. Autom. 12(1), 90–102 (1996)

    Article  Google Scholar 

  10. Li, Y., Chen, Y., Yang, Y., Wei, Y.: Passive particle jamming and its stiffening of soft robotic grippers. IEEE Trans. Robot. 33(2), 446–455 (2017)

    Article  Google Scholar 

  11. Kim, Y.J., Cheng, S., Kim, S., Iagnemma, K.: A novel layer jamming mechanism with tunable stiffness capability for minimally invasive surgery. IEEE Trans. Robot. 29(4), 1031–1042 (2013)

    Article  Google Scholar 

  12. https://softroboticstoolkit.com/. Accessed 27 Apr 2019

  13. Manti, M., Hassan, T., Passetti, G., D’Elia, N., Laschi, C., Cianchetti, M.: A bioinspired soft robotic gripper for adaptable and effective grasping. Soft Robot. 2(3), 107–116 (2015)

    Article  Google Scholar 

  14. Camarillo, D.B., Milne, C.F., Carlson, C.R., Zinn, M.R., Salisbury, J.K.: Mechanics modeling of tendon-driven continuum manipulators. IEEE Trans. Robot. 24(6), 1262–1273 (2008)

    Article  Google Scholar 

  15. Mutlu, R., Yildiz, S.K., Alici, G., Panhuis, M.I.H., Spinks, G.M.: Mechanical stiffness augmentation of a 3D printed soft prosthetic finger. In: IEEE International Conference on Advanced Intelligent Mechatronics (AIM), pp. 7–12 (2016)

    Google Scholar 

  16. Al Abeach, L.A.T., Nefti-Meziani, S., Davis, S.: Design of a variable stiffness soft dexterous gripper. Soft Robot 4(3), 274–284 (2017)

    Article  Google Scholar 

  17. Park, W., Seo, S., Bae, J.: A hybrid gripper with soft material and rigid structures. IEEE Robot. Autom. Lett. 4(1), 65–72 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

This research is supported by National Natural Science Foundation of China (Grant nos. 51675376, 51675371 and 51675367). National Key R&D Program of China (nos. 2017YFB1104700, 2017YFE0112100, and 2016YFE0112100), Science & Technology Commission of Tianjin Municipality (Grant no. 18PTZWHZ00160), China-EU H2020 MNR4SCell (no. 734174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fujun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S. et al. (2019). A Novel Dual-Drive Soft Pneumatic Actuator with the Improved Output Force. In: Yu, H., Liu, J., Liu, L., Ju, Z., Liu, Y., Zhou, D. (eds) Intelligent Robotics and Applications. ICIRA 2019. Lecture Notes in Computer Science(), vol 11742. Springer, Cham. https://doi.org/10.1007/978-3-030-27535-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27535-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27534-1

  • Online ISBN: 978-3-030-27535-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics