Advertisement

A Wall Climbing Robot Arm Capable of Adapting to Multiple Contact Wall Surfaces

  • Shiyuan Bian
  • Dongyue Xie
  • Yuliang Wei
  • Feng Xu
  • Min Tang
  • Deyi KongEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11741)

Abstract

The wall climbing robot is widely used in a great many fields. There are more and more technical requirements for wall-climbing robots, such as better load, more stability and adapt to multiple environments. This paper studies a composite wall climbing robot palm for a wall climbing robot to adopt multiple environments. The palm consists of a suction cup, five hooks, and bionic setae array materials. The body of the palm is produced by 3D printing and the bionic materials are fabricated by polymer print lithography technology inspired by the gecko. The edge of the suction cup has cured a circle of bionic setae array materials to enhance the adhesion force. The bionic setae array materials on the palm for better adapt to the smooth surface and the hooks are used to attach on the rough surface. The composite palm is well tested in smooth, wet and rough surfaces. Moreover, the composite palm is fixed on the arm of the wall climbing robot. The arm of the wall climbing robot is proposed by a new type of gear transmission system.

Keywords

Wall climbing robot Bionic setae array Adhesion Lithography technology 

References

  1. 1.
    Grieco, J., Prieto, M., Armada, M., Gonzalez de Santos, P.: A six-legged climbing robot for high payloads. In: Proceedings of the International Conference on Control Applications, CCA, Trieste, Italy, pp. 446–450 (1998)Google Scholar
  2. 2.
    Berengueres, J., Tadakuma, K., Kamoi, T., Kratz, R.: Compliant distributed magnetic adhesion device for wall climbing. In: Proceedings of the International Conference on Robotics and Automation, ICRA, pp. 1256–1261 (2007)Google Scholar
  3. 3.
    Peters, G., Pagano, D., Liu, D.K., Waldron, K.: A prototype climbing robot for inspection of complex ferrous structures. In: Proceedings of the 13th International Conference on Climbing and Walking Robots, CLAWAR, Nagoya, Japan, pp. 150–156 (2010)Google Scholar
  4. 4.
    Kamagaluh, B., Kumar, J.S., Virk, G.S.: Design of a multi-terrain climbing robot for petrochemical applications. In: Proceedings of the 15th International Conference on Climbing and Walking Robots, CLAWAR, Baltimore, USA, pp. 639–646 (2012)CrossRefGoogle Scholar
  5. 5.
    Fei, Y., Zhao, X., Wan, J.: Motion analysis of a modular inspection robot with magnetic wheels. World Congr. Intell. Control Autom. 2, 8187–8190 (2006)Google Scholar
  6. 6.
    Fischer, W., Caprari, G., Siegwart, R., Moser, R.: Compact climbing robot rolling on flexible magnetic rollers, for generator inspection with the rotor still installed. In: Proceedings of the 14th International Conference on Climbing and Walking Robots, CLAWAR, Paris, France, pp. 384–391 (2011)Google Scholar
  7. 7.
    Tavakoli, M., Marques, L., de Almeida, A.T.: OmniClimber: an omnidirectional light weight climbing robot with flexibility to adapt to non-flat surfaces. In: International Conference on Intelligent Robots and Systems, IEEE, pp. 280–285 (2012)Google Scholar
  8. 8.
    Xu, Z., Ma, P.: A wall-climbing robot for labelling scale of oil tank’s volume. Robotica 20(02), 209–212 (2002)CrossRefGoogle Scholar
  9. 9.
    Shen, W., Gu, J.: Permanent magnetic system design for the wall-climbing robot. In: International Conference on Mechatronics and Automation, Niagara Falls, Canada, no. July, pp. 2078–2083 (2005)Google Scholar
  10. 10.
    Lee, G., Kim, J., Seo, T.: Combot: compliant climbing robotic platform with transitioning capability and payload capacity. In: International Conference on Robotics and Automation, ICRA, IEEE, Saint Paul, Minnesota, USA, pp. 2737–2742 (2012)Google Scholar
  11. 11.
    Kim, H., Kang, T., Choi, H.: Walking and climbing robot for locomotion in 3D environment. In: International Symposium on Automation and Robotics in Construction, ISARC (2004)Google Scholar
  12. 12.
    Tlale, N.S., Bright, G.: Distributed mechatronics controller for modular wall climbing robot. In: International Conference on CAD/CAM, Robotics and Factories of the Future, India, no. July, pp. 740–752 (2006)Google Scholar
  13. 13.
    Wile, G., Aslam, D.M.: Design, fabrication and testing of a miniature wall climbing robot using smart robotic feet, Technical Report. Servo 1, Micro and NanoTechnology Laboratory, Michigan State University, E. Lansing, Michigan, USA (2007)Google Scholar
  14. 14.
    Madsen, O., Shang, J., Sattar, T., et al.: Design of a climbing robot for inspecting aircraft wings and fuselage. Ind. Robot Int. J. 34(6), 495–502 (2007)CrossRefGoogle Scholar
  15. 15.
    Luk, B.L., Collie, A.A., Cooke, D.S., Chen, S.: Walking and climbing service robots for safety inspection of nuclear reactor pressure vessels. J. Measur. Control. 39(2), 43–47 (2006)CrossRefGoogle Scholar
  16. 16.
    Zhang, H., Wang, W., Zhang, J.: High stiffness pneumatic actuating scheme and improved position control strategy realization of a pneumatic climbing robot. In: Proceedings of the International Conference on Robotics and Biomimetics, IEEE, Bangkok, Thailand, pp. 1806–1811 (2009)Google Scholar
  17. 17.
    Apostolescu, T.C., Udrea, C., Duminica, D., Ionascu, G., Bogatu, L., Cartal, L.A.: Development of a climbing robot with vacuum attachment cups. In: International Conference on Innovations, Recent Trends and Challenges in Mechatronics, Mechanical Engineering and New High-Tech Products Development, MECAHITECH, p. 3 (2011)Google Scholar
  18. 18.
    Yoshida, Y., Ma, S.: Design of a wall-climbing robot with passive suction cups. In: Proceedings of the International Conference on Robotics and Biomimetics, ROBIO, IEEE, Tianjin, China, pp. 1513–1518 (2010)Google Scholar
  19. 19.
    Nishi, A., Wakasugi, Y., Watanabe, K.: Design of a robot capable of moving on a vertical wall. Adv. Robot. 1(1), 33–45 (1986)CrossRefGoogle Scholar
  20. 20.
    Longo, D., Muscato, G.: Simulation and locomotion control for the Alicia3 climbing robot. In: 22nd International Symposium on Automation and Robotics in Construction, ISARC, Ferrara (Italy), 11–14 September 2005Google Scholar
  21. 21.
    Qian, Z.-Y., Zhao, Y.-Z., Fu, Z., Wang, Y.: Fluid model of sliding suction cup of wall-climbing robots. Int. J. Adv. Robot. Syst. 3(3), 275–284 (2006)Google Scholar
  22. 22.
    Miyake, T., Ishihara, H., Yoshimura, M.: Basic studies on wet adhesion system for wall climbing robots. In: Proceedings of the International Conference on Intelligent Robots and Systems, IROS, San Diego, USA, pp. 1920–1925 (2007)Google Scholar
  23. 23.
    Song, Y.K., Lee, C.M., Koo, I.M., Tran, D.T., Moon, H., Choi, H.R.: Development of wall climbing robotic system for inspection purpose. In: Proceedings of the International Conference on Intelligent Robots and Systems, IROS, Nice, France, pp. 1990–1995 (2008)Google Scholar
  24. 24.
    Li, J., Gao, X., Fan, N., Li, K., Jiang, Z.: Adsorption performance of sliding wall-climbing robot. Chin. J. Mech. Eng. 23, 1 (2010)CrossRefGoogle Scholar
  25. 25.
    Kim, S., Asbeck, A.T., Cutkosky, M.R., et al.: SpinybotII: climbing hard walls with compliant microspines. In: Adsorption performance of sliding wall-climbing robot Advanced Robotics, 2005, ICAR 2005, Proceedings, pp. 601–606 (2005)Google Scholar
  26. 26.
    Clark, J., Goldman, D., Lin, P.-C., et al.: Design of a bio-inspired dynamical vertical climbing robot. In: Robotics: Science and Systems (2007)Google Scholar
  27. 27.
    Schmidt, D., Hillenbrand, C., Berns, K.: Omnidirectional locomotion and traction control of the wheel-driven, wall-climbing robot. CROMSCI Robotica J. 29(7), 991–1003 (2011)CrossRefGoogle Scholar
  28. 28.
    Saunders, A., Goldman, D., Full, R., et al.: The rise climbing robot: body and leg design. In: Defense and Security Symposium, p. 623017 (2006)Google Scholar
  29. 29.
    Birkmeyer, P., Gillies, A.G., Fearing, R.S.: CLASH: climbing vertical loose cloth. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5087–5093 (2011)Google Scholar
  30. 30.
    Daltorio, K.A., Wei, T.E., Gorb, S.N., et al.: Passive foot design and contact area analysis for climbing mini-whegs. In: 2007 IEEE International Conference on Robotics and Automation, pp. 1274–1279 (2007)Google Scholar
  31. 31.
    Liu, Y., Sun, S., Wu, X., et al.: A leg-wheel wall-climbing robot utilizing bio-inspired spine feet. In: 2013 IEEE International Conference on Robotics and Biomimetics, ROBIO, IEEE (2013)Google Scholar
  32. 32.
    Unver, O., Sitti, M.: Tankbot: a palm-size, tank-like, climbing robot using soft elastomer adhesive treads. Int. J. Robot. Res. 29(14), 1761–1777 (2010)CrossRefGoogle Scholar
  33. 33.
    Unver, O., Uneri, A., Aydemir, A., et al.: Geckobot: a gecko inspired climbing robot using elastomer adhesives. In: Proceedings of the 2006 IEEE International Conference on Robotics and Automation(ICRA), Orlando, USA, IEEE, pp. 2329–2335 (2006)Google Scholar
  34. 34.
    Unver, O., Sitti, M.: Flat dry elastomer adhesives as attachment materials for climbing robots. IEEE Trans. Robot. 26(1), 131–141 (2010)CrossRefGoogle Scholar
  35. 35.
    Murphy, M., Kute, C., Menguc, Y., et al.: Waalbot II: adhesion recovery and improved performance of a climbing robot using fibrillar adhesives. Int. J. Robot. Res. 30(1), 118–133 (2011)CrossRefGoogle Scholar
  36. 36.
    Kim, S., Spenko, M., Trujillo, S., et al.: Smooth vertical surface climbing with directional adhesion. IEEE Trans. Robot. 24(1), 65–74 (2008)CrossRefGoogle Scholar
  37. 37.
    Menon, C., Li, Y., Sameto, D., et al.: Abigaille-I: towards the development of a spider-inspired climbing robot for space use. In: Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, Sottsdale, USA, IEEE, pp. 384–389 (2008)Google Scholar
  38. 38.
    Wu, X., Wang, D., Zhao, A., et al.: A wall-climbing robot with biomimetic adhesive pedrail. In: Zhang, D. (ed.) Advanced Mechatronics and MEMS Devices, pp. 179–191. Springer, New York (2013).  https://doi.org/10.1007/978-1-4419-9985-6_9CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Shiyuan Bian
    • 1
    • 2
    • 3
  • Dongyue Xie
    • 4
  • Yuliang Wei
    • 1
    • 2
    • 3
  • Feng Xu
    • 1
    • 2
    • 3
  • Min Tang
    • 1
    • 2
    • 3
  • Deyi Kong
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.State Key Laboratory of Transducer Technology, Institute of Intelligent Machines, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
  2. 2.Key Laboratory of Biomimetic Sensing and Advanced Robot Technology of Anhui Province, Institute of Intelligent Machines, Hefei Institutes of Physical ScienceChinese Academy of SciencesHefeiChina
  3. 3.University of Science and Technology of ChinaHefeiChina
  4. 4.Hefei University of TechnologyHefeiChina

Personalised recommendations