Advertisement

Application of PMN-PT Piezoelectric Monocrystal in Wideband Transducer with Composite Rod Matching Layer

  • Feng-hua TianEmail author
  • Jun Li
  • Yi-ming Liu
  • Zhuo Xu
  • Yun-chuan Yang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11741)

Abstract

In view of the characteristics of high energy density, high piezoelectric constant, low frequency constant and good low frequency performance of PMN-PT piezoelectric monocrystal material, this paper studies the corresponding technology from the perspective of engineering application. Aiming at the weakness of PMN-PT piezoelectric monocrystalline material, such as low phase transition temperature, low coercivity field and fragile, and combining with specific application background and demand, the solution is given. A batch of PMN-PT piezoelectric monocrystal transducers were developed and tested for its voltage-resistance, temperature stability and acoustic performance. The results show that the PMN-PT piezoelectric monocrystalline material has obvious advantages of acoustic performance of transmission and reception, it also reflects good low-frequency broadband characteristics and can be used in the high-power composite rod matching layer broadband transducer. The research results can be used to guide the application of PMN-PT piezoelectric monocrystal in sonar.

Keywords

PMN-PT piezoelectric monocrystal Matching layer Broad band Acoustic transducer 

References

  1. 1.
    Meyer, R.J., Montgomery, T.C., Hughes, W.J., et al.: Tonpilz transducers designed using single crystal piezoelectrics. In: OCEANS 02 MTS/IEEEE, vol. 4, pp. 2328–2333. IEEE (2002)Google Scholar
  2. 2.
    Snook, K.A., Rehrig, P.W, et al.: Advanced piezoelectric single crystal based transducers for naval sonar applications. In: 2005 IEEE Ultrasonics symposium, vol. 2, pp. 1065–1068. IEEE (2005)Google Scholar
  3. 3.
    Rehrig, P.W., Hackenberger, W.S., Jing, X.N., et al.: Naval device applications of relaxor piezoelectric single crystals. In: 2002 IEEE Ultrasonics Symposium, vol. 1, pp. 733–737. IEEE (2002)Google Scholar
  4. 4.
    Rehrig, P.W., Snook, K.A., Hackenberger, W.S., et al.: Tailored single crystal orientations for improved tonpilz transducer performance. In: 2006 IEEE Ultrasonics Symposium, pp. 359–362. IEEE (2006)Google Scholar
  5. 5.
    Sherlock, N.P., Meyer, R.J.: Modified single crystals for high-power under water projectors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59(6), 1285–1291 (2012)CrossRefGoogle Scholar
  6. 6.
    Tang, Y., Yu, H., Wen, N., Li, J.: Effect of changing the transducer impedance on the matching layer parameter. Appl. Acoust. 21(6), 36–39 (2002)Google Scholar
  7. 7.
    Chen, H., Zhang, M., Li, Z.: Design of wide-band longitudinal mode piezoelectric transducers with impedance matching layers. Appl. Acoust. 20(2), 31–34 (2001)Google Scholar
  8. 8.
    Rajapan, D.: Performance of a low-frequency, multi-resonant broadband tonpilz transducer. Acoust. Soc. Am. 111, 1692–1694 (2002)CrossRefGoogle Scholar
  9. 9.
    Peng, J., Luo, H., He, T., Xu, H., Lin, D.: Elastic, dielectric, and piezoelectric characterization of 0.70Pb(Mg1/3Nb2/3)O3-0.30PbTiO3 single crystals. Mater. Lett. 59, 640–643 (2005)CrossRefGoogle Scholar
  10. 10.
    Meng, H., Yu, H., Luo, H., et al.: Using PMNT in underwater acoustic transducers. Acoust. Electron. Eng. 73(1), 22–26 (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Feng-hua Tian
    • 1
    • 2
    Email author
  • Jun Li
    • 2
  • Yi-ming Liu
    • 1
  • Zhuo Xu
    • 3
  • Yun-chuan Yang
    • 1
  1. 1.The 705 Institute of China Shipbuilding Industry CorporationXi’anChina
  2. 2.School of Mechanical EngineeringXi’an Jiaotong UniversityXi’anChina
  3. 3.School of Electronic and Information EngineeringXi’an Jiaotong UniversityXi’anChina

Personalised recommendations