Advertisement

Deep Learning Based Fire Detection System for Surveillance Videos

  • Hao WangEmail author
  • Zhiying Pan
  • Zhifei Zhang
  • Hongzhang Song
  • Shaobo Zhang
  • Jianhua Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11741)

Abstract

At present, the method of detecting fire by convolutional neural network only uses flame or smoke as an indicator of fire occurrence, and such a method is somewhat limited. This article also detects flames and smoke so that it can be alarmed only when smoke or flame is detected. When the smoke and flame are detected at the same time, the credibility of the alarm can be improved. Our experiments show that the proposed network achieves excellent accuracy and speed.

Keywords

Deep learning Fire detection Smoke detection Surveillance videos 

Notes

Acknowledgment

This work was supported National Natural Science Foundation of China (61876167 and U1509207).

References

  1. 1.
    Lin, M.X., Chen, W.L., Liu, B.S., et al.: An intelligent fire-detection method based on image processing. Adv. Eng. Forum 2–3, 172–175 (2011)CrossRefGoogle Scholar
  2. 2.
    Marbach, G., Loepfe, M., Brupbacher, T.: An image processing technique for fire detection in video images. Fire Saf. J. 41(4), 285–289 (2006)CrossRefGoogle Scholar
  3. 3.
    Çelik, T., Demirel, H.: Fire detection in video sequences using a generic color model. Fire Saf. J. 44(2), 147–158 (2009)CrossRefGoogle Scholar
  4. 4.
    Borges, P.V.K., Izquierdo, E.: A probabilistic approach for vision-based fire detection in videos. IEEE Trans. Circuits Syst. Video Technol. 20(5), 721–731 (2010)CrossRefGoogle Scholar
  5. 5.
    Rafiee, A., Tavakoli, R., Dianat, R., et al.: Fire and smoke detection using wavelet analysis and disorder characteristics. In: International Conference on Computer Research & Development, IEEE (2011)Google Scholar
  6. 6.
    Habiboğlu, Y.H., Günay, O., Çetin, A.E.: Covariance matrix-based fire and flame detection method in video. Mach. Vis. Appl. 23(6), 1103–1113 (2012)CrossRefGoogle Scholar
  7. 7.
    Frizzi, S., Kaabi, R., Bouchouicha, M., et al.: [IEEE IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society - Florence, Italy (2016.10.23-2016.10.26)] IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society - Convolutional neural network for video fire and smoke detection. In: Conference of the IEEE Industrial Electronics Society, IEEE, pp. 877–882 (2016)Google Scholar
  8. 8.
    Lecun, Y.L., Bottou, L., Bengio, Y., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)CrossRefGoogle Scholar
  9. 9.
    Tao, C., Zhang, J., Wang, P.: Smoke detection based on deep convolutional neural networks. In: International Conference on Industrial Informatics-computing Technology, IEEE (2017)Google Scholar
  10. 10.
    Tomas Polednik, Bc.: Detection of fire in images and video using CNN. Excel@FIT (2015)Google Scholar
  11. 11.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)Google Scholar
  13. 13.
    Xu, Z., et al.: Towards End-to-end license plate detection and recognition: a large dataset and baseline. In: 15th European Conference, Munich, Germany, 8–14 September 2018, Proceedings, Part XIII (2018)CrossRefGoogle Scholar
  14. 14.
    Chorowski, J.K., Bahdanau, D., Serdyuk, D., Cho, K., Bengio, Y.: Attention-based models for speech recognition. In: Advances in Neural Information Processing Systems, pp. 577–585 (2015)Google Scholar
  15. 15.
    Zhou, B., Khosla, A., Lapedriza, A., et al.: Object Detectors Emerge in Deep Scene CNNs. Computer Science (2014)Google Scholar
  16. 16.
    Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2014)Google Scholar
  17. 17.
    Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
  18. 18.
    Li, B., Peng, X., Wang, Z., et al.: AOD-Net: all-in-one dehazing network. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4770–4778 (2017)Google Scholar
  19. 19.
    Ko, B.C., Ham, S.J., Nam, J.Y.: Modeling and formalization of fuzzy finite automata for detection of irregular fire flames. IEEE Trans. Circuits Syst. Video Technol. 21(12), 1903–1912 (2011)CrossRefGoogle Scholar
  20. 20.
    Girshick, R.: Fast R-CNN. Computer Science (2015)Google Scholar
  21. 21.
    Liu, W., Anguelov, D., Erhan, D., et al.: SSD: single shot multibox detector. In: European Conference on Computer Vision (2016)Google Scholar
  22. 22.
    Li, H., Wang, P., Shen, C.: Toward end-to-end car license plate detection and recognition with deep neural networks. IEEE Trans. Intell. Transp. Syst. PP(99) (2017) Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Hao Wang
    • 1
    Email author
  • Zhiying Pan
    • 1
  • Zhifei Zhang
    • 1
  • Hongzhang Song
    • 2
  • Shaobo Zhang
    • 3
  • Jianhua Zhang
    • 1
  1. 1.College of Computer Science and TechnologyZhejiang University of TechnologyHangzhouChina
  2. 2.High Dimension Vision Technology Co., Ltd.HangzhouChina
  3. 3.Vision Entropy Technology Co., Ltd.HangzhouChina

Personalised recommendations